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INTRODUCTION

The main purpose of this investigation was to make an
analysis and experimental study for the problem of reinforced
concrete columns subject to eccentric compressive forces which
cause buckling. Most specifications either give no information
‘about it at all or give rough imperical rules which are not based
on sound theoretical or experimental work. Research work on
eccentric buckling is very scarce. Even the case of axial buckling

has not been given as much attention as it deserves.

in the analysis of axial and eccentric buckling, the main
difference between the case of a reinforced concrete column and
that of a column of homogeneous elastic materials as steel lies in
the term K I. For a reinforced concrete column both Eand [ vafy
‘continuously during loading. Consequently, it has been found
essential to precede the study of the main problem of buckling

in réinforced consrete by a study for the problem of buckling in

homogeneous elastic materials,
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The investigation consists of two parts : —

Parr I.—dzial and Becentric Buckling in Homogeneous Blastic
Materials :

Ln this part the following points are dealt with :—

1. A brief review of the mathematical solutions for axial
and eccentric buckling,

2. Systematised graphical procedures for the general solution
of problems on axial and eccentric buckling for any variation
in moments of inertia and end conditions.

3. Development of a simple apparatus adaptable for use in
the design office which simplifies the solution considerably.

4. Two different procedures for solution by successive trials

are given by which a complete picture of the variation of

- maximum deflections and stresses with the load up to failure can
be obtained.

5. The use of an approximate simple equation for eccentric
buckling which gives the maximum deflections and stresses to a
good degree of accuracy.

Parr LL.—Buckling in Eccentrically Loaded Reinforced Concrete
Columns :

A report is given, in this part, on an experimental inves-
tigation made on fourteen eccentrically loaded R.C. columns.
The columns had the same concrete dimensions but were loaded
at different eccentricities on the longer and shorter axes of
symwetry of their rectangular cross-sections. The actual
stresses and deflections obtained experimentally were compared
with those computed by analytical procedures developed for the
checking of stresses and deflections under eccentric buckling.
It has been shown that the use of the ordinary assumptions of
the standard theory for reinforced concrete design leads to wide
discrepancies between the computed and actual values, while if
more accurate assumptions are made a satisfactory agreement
was obtained.



PART 1

AXIAL AND ECCENTRIC BUCKLING IN HOMOGENEOUS
ELASTIC MATERIALS

L—AxiaL Bucknine _
L — Mathemasicue Methods for Determining the Buckiing Load :
a) lxact Method :

The exact mathematicul solution for axial buckling is based
onsolving the differential equation of the slightly deflected column
for the boundary counditions of the problem.

For exwmple in (Fig. 1), the ditferential equation
! g 1), 1

Ly _P(B—y) . ed ) P
s = R giving e buckling load - : -
n Bl '
(P =T %) !

For complizated cases of loading or varia- 4 f |
tions of the moment of intertia of the column, x|

the solution cf the diferentinl equation becomes
rather difficul.

b) dppreximate Method : He
The approximate mathematical solutions are based on assum-
ing a simple equation for the detlected column and correcting
it successively until we obtain the required degree of accuracy
for the configuration of the column. X\ p
This may be effected either :

i) by considering the shape of g 3,8
the elastic line. [For example in s, A6
(Fig. 2), if we assume the elastic line g

18, Y
a parabola y, = TT X ({—x), then T—— " ; — T

the deflection at the center by the
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D

moment area method is & center = = P 5, {%. Equating this

to the assumed deflection at center &, we get the buckling loa.i
48 Kl T oo .
P, = = E- A better approximation is obtained if the detlcc-

tion carve obtained from the first assumption is assumed as an
initial curve and so on or

ii) by considering the strain energy during the configuration
of the column. The decrease in the potential energy due to the
lowerinig of the top end is equal to the work done by the load
during the lowering action.

In (Fig. 1) if we assume the initial curve asa parabola we

. EL . ..
obtain P, =2.5 T from the first assumption with an error

F

of 13%. Better results could be obtained successively.

2. — Numn.erical Methods by Successive Trial:

A practical solution could be made for any condition of axial
loading and any variation of L avoiding differen tial or complicated
equations using the following procedure :—

a) Assume a reasonable curve for the deflection curve.

b) Compute the deflections at different points of the column.

¢) Equating either the maximum deflection or the average

deflection in cases (a) and (0) we get an approximate value
for the buckling load.

d) Taking the curve cbtained in (b)) as an initial curve and
repeating the same as in (¢) we get a better value for the critical
buckling load. |

In the case shown in (Fig. 3) which is solved before we
will assume that the initial deflection curve is (i) Triangle
(it) Trapezium, (iii) Parabola, (iv) Sine Curve. Although the first
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assumption is a rude one, yet the result obtained was satisfactory.

The table shown below gives the results obtained for the
four assumptions.

P

q

P )

-

J
I 1% 4 '
1 b
P
Fig 3 Triangle Trapezium Parabola Sine curve
t
Assumed Deflection Critieal Buckling Load Error
For Assumed After First o
Curve Curve Correction Exact %
12 EI . 10"13 EI w3 El .
i. Triangle . P, = P Pae = — 3 |Pee™= T3 +2°72
. ‘4 El 10-05 EI
ii. Trapezium Per — 2‘1 P) Per — T " +1°92
. -84
iii. Parabola . Per = £ ?‘EL Po = —9——872—}:!« - —0°2
iv. Sine Curve . Por = Erl;:—[ No correction n 0

The accuracy of the results depends on the initial assuinption
of the deflection curve.

Prof. Newmark has developed an ingenious numerical pro-
cedure for determining deflections, based on parabolic distribution.

3.—Graphical Jethods by Successive Trial:

Since in buckling problems the whole elastic line is needed
gp ,

graphical methods are believed to be more adaptable, simpler and
quicker. The graphical solution becomes much simpler if the
initial assumption for the deflection curve is vot very far from

4
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tgefactual_»'conﬁguration of the. column and+if a systematized
method: for the scales is; used (see examples inthe thesis).,

An approximate method developed for the determination’' of
the initial deflection curve:

This is a very rude experimental method in which a simple
cardboard model’representq the -distribution of 1 of the column
along its length.. The model is held by both hands in a manner,
W}nqh represents the end condmons and pushed so as to give
mmal deﬂectlon; curve (Fxo' 4). The critical buckling load

a: =06
=004

Fig. 4

- ;. method was il carate Loy
. design especially after one or two corrections. The error

1

in many exampleé -Was less than 1% after the first correction. :

4—A Szmple Apparatus for the Determmat:on of the Buckling
Load:

* A simple apparatus-was developed to improve the method
given before by satisfying more accurately the end conditions.
A cardboard model was used and fitted in elements A and B
of the apparatus (Fig. 5), so as to satisfy the required boundary
conditions. Six examples solved by the use of the apparatus,‘
three of which were for columns of variable I with hinged ends
and the other three were for the same columns with fixed lends.v

The error in the results was neﬂxmble

The method is very simple, avoids elaborate mathema’noﬂ
solutions and saves much time.
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[I.—Eccentric BuckLixg

When a beam is subjected to simultaneous action of axial
and lateral loads, the deviation of the beam from the straight

position leads to an appreciable increase in the straining actions
in the beam.

Modes of change of Moments, Deflections and Stresses
with the Load:

Two cases are considered :

1. The axial load and B.M. are proportional and increase
simultaneously (Fig. 6).

Fig. 7

2. The axial load and B.M. ave independent (Fm 7). Three
conditions may be considered : —

a) Axial load P is constant and lateral loads W increase
to failure.

) W is constant while P increases up to failure.

¢) Both P and W increase simultaneously.

In case a) the moments, deflections and stresses are approxi-
mately proportional to the lateral loads. In the other two

conditions, they are increasing at a rapidly increasing rate with
the increase of the axial load.
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Mathematical solutions for cccentric buckling :

The mathematical solution is based on writing the differen-
tial equation for the deflected beam due to the combined action
of bending and axial loading and solving for boundary conditions.

For example in Fig. 8:

P b P
“’T
Fig 8. E*——-%——r"—q

Q1° 3 (Tanu— )

Baw. = 48 Kl o’
Qi
and M .., = T + P o
In Fig. 9:
pmouity & P
Fig 9. g
g P
_ B_L‘ (secg——1~~9—)
Bux = {GEI : !4%;
¥ K -
12 7
Mnax. — 98—' + P 6mu. . _T\
\
In Fig. 10: a \
5 o ez bl
max, cos ¢ ?;‘?
M,. = Pesecyp i ‘
In each case: l'
v

P Mawy | P |
fmu. = "‘+~ﬂ5""3ndl‘=fd""
A I 2 VEL €y
P

The load which causes a certain stress is obtain-
ed by trial. The manner of variation of the stress  Fig 10
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with the load isiobtained by plotting the stress correspond-
igg l;o:_the gradqally increasing load.

5. ——General Solution:- for E(centrw Bur'/clmq by Successive
L Trial: ' :

For complicated cases the direct mathematical solution is
too elaborate for practical design. A simple solution based on
successive trial is given which applies for any condition of

loading, any variation of I and any end condition.

Tw o different procedures are proposed. - They are illustrated
here for the case shown in (Fig. 10) s

e

A.—I'irst Procedure :

a) Assume the deflection curve a paraboia wiit mixinam
ordinate 5.

b) Using the moment-area method, find P corresponding
to assumed 8.

¢) Correct the deflection curve due to P at other pomts of
the cclumn.

«) Find the correct:ed value of P due to final deflection
curve. ' ' '

Pe4+d)y

e) Find f,, A+ _;,l-,

f) Assume a higher value of 5 middle and repeat steps (a)
to (e). '
. ¢)’Plot P against £, and P zigaiust 5.

The curves give a complete picture for the variation of
stresses, deflections with the load, from whlch the safe and
fallure loads can be easily obtained.

B.— Second : [’rocedure

a) Assume a small value of P and find 6 middle neglecting
the effest of buckling.
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6) Assume the deflection curve a parabola with initial max.
ordinate & middle. Find the exact deflection & correct due to P.

¢) Assuming a load = 2p and corresponding deflection = 2
5 correct. Compute the exact deflections by making one or
more corrections.

d) Assuming a load = 4 P the deflection & can be appro-
ximately obtained from the extension of the load deflection curve
for the results obtained before. The exact value of 5 is obtained:
by one or more corrections and so on.

¢) Find f max. = A+1—)ﬁ*l;ﬁ—

Example 1: The deflections, stresses, and the buckling:
load for a column of constant cross-section 20 ¥ 30 cms. [ =
8 ms. for which E = 2000 t/cm? f, = 3000 kg[cm? are shown in
(Fig. 11), for (a) e = 5 cms. (b) e = 10 cms. (c) e 20 cms.

The problem was solved by the two procedures which gave
the same result.

Examples 2 and 3: For the columns of (Figs. 12) and (13)
the results were as shown in (Figs. 14) and (15). '

Fx. 2 Ex. 3
A .
‘ e P
P B
17 - 4 <
) F a:1=106 ]Fa'l=0‘4
S I,} It: 2 =04 I. -
1:I2=0¢
I,
L (a)e =5 cms __
I 57 el : oy =
a:: ms () e =20 , 6 = »
a=2amY I,
)t )
Fig. 12 Fig. 13

Example 4 The solution is applied for the case shown
(Fig. 16)in which the stresses and the deflections were obtained
for a beam of variable cross-section in which the breadth
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is constant == 40 cms, while the depth varies linearly. Three

cases were considered.

a) Lateral loads W = const = 6 t while axial load P
increases up to failure.

W, W, w W W
R T T T -
ane ,m: 2"‘05 pm: ?m; 2N N

M
=
e / ’0/ 4 ]
I't5 k T em

Fig. 16

b) P = const = 100 t while W increases up to failure.

¢) Both P and W increase simultaneously so that P = 25 W.

6.—An Approzimate Simple Solution for Problems of Eccentric
Buckling :

A general simple solution can be made for problems of eccentric

buckling by the use of the approximate formula 3 = 3 —

a
P

where a =
P

8 = deflection buckling considered

er

5, = ” » neglected

o

P = axial load on member Pg = critical buckling load.

This formula is given in Timoshenko for some special cases.
It has been proved for some other cases. It has also been shown
that it applies to a sufficient degree of accuracy, for the general
case, if the shape of the deflection curve due to bending docs not
deviate considerably from the configuration due to axial loading.

For a given condition of loading, the procedure is as follows =

1. Determine the deflection 8, due to lateral loads
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2. Determine P,, for axial loading.

3. The deflection due to combined action of axial and lateral

1
loads is given by & = 8, T—s

Application of the approximate formula on the examples
solved before :

Applying this approximate formula on the examples solved
before, the error in the stresses and deflections was very small.
The vesults obtained by this approximate formula were very
satisfactory. The use of the apparatus for the determination of
P gives a further appreciable simplification for the problem.

PART 1I

EXPERIMENTAL INVESTIGATION ON REINFORCED CONCRETE
' COLUMNS SUBJECT TO ECCENTRIC BUCKLING

. INTRODUCTION
Purpose and Scope of Tests:

In this investigation a study was made on the stresses and
deflections in fourteen R.C. columns of constant cross-section
20 X 25'8 cms. and constant height 6 ms., subject to eccentric
buckling when the load increased up to failure.

6¢’é"” ~
Pl < Cm €= ;O?D
-‘. - -‘ % 20 ez 375
?g‘gcm €= 25.0
= e=12.5
l c= 6.25
= o00
Fig. (17a)

Figs. (17a) and (17b) show the reinforcing of the columns
and the manner in which they were loaded.
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Strain measurements and ‘ddflections were taken at the fiddle
and.quarter pojnts. of, the height. Actual stresses and deflections
obtained from tests were compared with those computed according
to the ordinary assumptions of the standard theory, and according
to some amended assumptions which gave much better results.

c
e=60

eé=4o
. e=20 o
e =/ o
e=5

e =

Fig. (17b)

[L.—ScusME oF INvEsTIGATION

. The materials used were, Tourah Portlant Cement, Pyramids
sand and gravel thoroughly washed, and ordinary reinforcing
bars of mild steel. Proportions of mix used were 1: 2: 4 by
weight and water cement ratio-0-5:"

Mixing was carried out in 2 mechanical mixer. ‘Steel moulds
were used for formwork. A vibrator was used in placing
concrete.

The specimens were kept in the ordinary atmosphere 6t theé
laboratory. They were sprinkled with water for the first ‘week
only. All columns were tested at the age of 28 days in a 500 t
Amsler Machine.

® > [3%-4
A Huggenberger deformeter (gage 25 cm and reads to

Z0p M™m) was used for obtaining strains, and a deflectometer
1 . .
(m mm) was used for measuring deflections. For the stress—

strain curves of the concrete prisms used as control specimens a

1000

Hﬂgg‘fenbergel‘_..extensometer measuring to mm was

~ used.
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[I1.—Test Resurts
The control specimens gave the following resnlts :

Concrete :
Cube strength (15°8° cm.) 334 kg./

Standard prisms (15-8X158X47°4 cm.) were
tested at four different rates of

loading.
For the standard rate of loading f, == 250 kg./cm
For a rate of 4 kg/cm?/min. f,o=245
For a rate of 2 kg/cm?/min. f,=233
For a very slow rate f,—=240 ,

Steel :

A }” diam. bar is tested in tension and
“the results of testing were E, = 2000 t/cm?
yield stress f, = 2800 kg/cm
tensile stress fo.. = 4250 kg/cm?

For the fourteer main columns, the thesis gives tables and
curves for the Load—e ¢, Load—e s and Load—3 as obtained
from tests, (e ¢ = max. strain on compression side, & 8 = max.
strain in tension steel and & = deflection).

Then from the stress-strain curves of the control spe:imens
the load —f, and the load—f, curves were obtained.

Fig. (18) shows carves for column (Fig 17a) e = 50 cms.

IV.—THaeoreTIcAL COMPUTATIONS

In computing deflections and stresses, two different ap--
proaches were tried :—

(A4) Computations applying simplified assumptions which
follow the “ Standard Theory of R.C.".
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(/) Computations according to amended more accurate
assumptions.

oo A Gomputatzon according to Ordinary Szmplzﬁvd As-
sumpz‘wns
1.—Deflections at central sections :—

In this assumption I, and | are considered constant. Three
different trials were applied to find out which will give bette:

result.
(@) E,= 210 t/em?
- I = moment of inertia of full concrate area neglecting
‘ steel.
() E;= 210 tfom? and n = 15
I = for full concrete area 4+ n times the steel area.

(¢) E,= 380 tfcm? (from the initial slope of stress strair
Es .
curve “d”) and n = = 25 and 1 is taken
c
for the concrete area in compression + n times
the steel area about the N.A. and is considered

constant at each stacre of loading.
The fox mula used was that demved for homocreneouﬁ materials.

M2 2 (1—cos p) e (1—cos )
SLEL pcosp _ cos u

8 max.‘ o

) : :
where p=— L I*li [ = effective length = 575 ms.
e in assumptions (a and b) is taken to the c.g.

" ein assumption (c) is taken to the N.A.
2.— Stresses f,and f,:

i+ Rough assumptions (a and b) are not valid for computing
stresses, Assumption (c) will give the stress load curve a

- . ' My I ey\
straxoht line one as f = A—~ - = P (A, + 1_'_)
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the second term is always constant. -~ - R
B.—Computation accerding to Amended Assﬁiuptions:
E, as obtained from secant line of the stress-strain curve of

2000

concrete — 270 tfcm? and n = 30 = 7°42 (constant). - ‘

E.is considered constant for all stages of loading.
Two different stages of loading were considered :—
(1) First stage before the development of cracks.

* ‘Stresses and deflections were calculated in this stage by
applying the formulae of homogeneous elastic bodies.

Assuming the deflection curve to be a parabola.

P [elP [ 58l
o = (V) -

& 48
P My
f oo, — =7
AT
where A, — total virtoal area —= bt + n A,
1, = moment of inertia of full area of concrete +n

times the steel area about the c.g
M =P(+5)

e = eccentricity of the load to the c.g. of the
section.

(u) Second stage after the development of eracks:

After f, has reached a value of 17 kg/cm?, the eﬁect of
concrete in tension is neglected. The change from stage ge (i to i)
is considered abrupt, although the actual “change is gradual.
Deflections were computed by successive trial as a function of the
stresses rather than a function of the moments and moments of

E- M

E i
inertia t.e. by the use of the equation P mstead of——,=-l-
" B = L
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Tie procedure is: Two sections were considered, section
I—T1 just below the leg, section II—II at the middle. For a given
load P the stresses f, and f,; at section I—1
were obtained for an eccentricity e from the PLE
c.g. of section. Then a reasonable value of 7. Y=
d at center was assumed and the stresses fg
and f at section 11—1I were obtained due
to P acting at an eccentricity (e 4 8) from Ir __U.es .«
the c.g. of section. The value was checked
as foliows :

1 [Pelt 3
— ;:m(T-{—Z;Psl’) =

Fig. 19

- —— —

which could be written in the form

. lz fcl 5 fcll fcl
® max. =— '“*-—‘8 Ec (-z—; + ?);(——Z—I;._Z;))

The work was repeated when necessary until the computed
d was equal to the assumed value of 8. The values of f, and f,
for section I and Il were obtained from the formulae:

M, z d—7z

f, == L and f,—=n f, - -

where 1, is computed for the compressed area of concrete 4+ n
times the steel area about the N.A. (variable).

7z distance between the N.A. and extreme compressed

fibres.
M, = moment of P about the N.A. — P X H,

H, = eccentricity of load from the N.A. and is calculated
at each stage of loading at sections T and I1,

The procedure was repeated for higher values of P until the
failure load was reached, which load corresponds to a max. stress
f, — £, = 2800 kgfem? or f, = f, = 240 kg/em? '



. V.—CoXCLELSIONS - e
Part 1:
1. Direct mathematical solutions of problems on axial buckl-

ing require elaborate differential equations particularly for
complicated cases and variation of the moment of inertia.

2. Mathematical solutions by successive trial for the con-
ficuration of the deflected column give simple algebraic or
trigonometric equations from which P, can be obtained.

3. Direct numerical solutions by successive trial, avoid the
use of elaborate mathematical work and are much simpler.

4. Graphical solutions when systematized as proposed, are
simpler ones.

5. The use of cardboard models representing the variation
of I gives a very good initial assumption for the deflection curve.

.t ' 6. The use of the proposed simple apparatus together with
the cardboard model gives very satisfactory results.

7. In eccentric buckling direct mathematical solutions are
very complicated.

i~ 8. Procedures for systematic solutions by successive trial
for the determination of stresses and deflections were proposed
for different modes of loading. '

9. The use of the approximate formula 5 = i_-S:.._& gave
satisfactory results and saves much time especially if the apparatus
is used for the determination of P..

qut 11 :

. * For the fourteen columns tested the following conclusions
could be made.



Deflections :

1. It has been found that the use of assumptions (a) and
(b) gave generally results much smaller than those obtained
experimentally particularly for small eccentricities.

2. Assumption (¢) led generally to more satisfactory
results except for small eccentricities. Still, however, the discri-
pancy between the computed and experimental results was
relatively big.

3. The amended assumptions proposed in (d) gave generally
a more satisfactory result than assumptioas (a, b, and ¢). In
tests of small eccentricities that lie within the section, however,
the results were not satisfactory. The discrepancy is believed to
be due to the sensitivity to any smaller error in the point of
application of the load or any small curvature in the center line
which will be of pronounced effect in case of small eccentricity
tests. An initial corvature of Z(!)() was allowed to cover the
imperfections in small eccentricity tests and better results were -

obtained.
Stresses :

Stresses were computed according to assumption “d” only
and the results obtained were in general satisfactory. The values
of f, were in general somewhat lower than test results particularly
in small eccentricity tests, where the assumption of an initial

curvature Z(%T) gave better agreement. The values of f, were
satisfactory. .
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