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ABSTRACT

An asymptotic description of dispersion in stratified aquifers using the center
manifold theory is presented. The system is assumed to evolve slowly in time and
space thus allowing the center manifold approach to be applicable. The spatial
variability in the process is accounted for by using spatially variable conductivity and
dispersion coefficients. The approach presented herein focuses on longitudinal
dispersion in the direction of mean flow. An important advantage of the proposed
approach is that higher order asymptotically correct approximations are easily obtained
once the first approximation has been derived. In addition, the approach yields a one-
dimensional ordinary differential equation that can be easily solved in comparison
with the two-dimensional advection dispersion equation. The predictions of the center
manifold equations closely match the observed spatial moments for the Cape Cod
tracer experiment of Massachusetts, USA.
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1. INTRODUCTION

In many physical problems the system evolves quickly towards a certain state
and thereafter it relaxes relatively slowly in space and time. The center manifold
theory has been developed to describe the slow evolution of such systems. The theory
provides a systematic approach to calculate a sequence of successive approximations
to the evolution of the principle structure in space and time [1]. Roughly, the theory
states that if the reference state of the system contains N zero eigenvalues and if all the

other eigenvalues are negative, then the system evolves exponentially quickly towards
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an N-dimensional manifold called the center manifold. The system then relaxes
relatively slowly on this center manifold according to the evolution of some dominant

modes for which differential equations can be derived.

When a contaminant is first released in a porous medium, two basic
mechanisms combine to distribute it in time. The contaminant is advected downstream
by the average flow field, while being dispersed longitudinally and laterally by the
fluctuating velocity field. These two components combine to ensure that, on average,
the mean concentration distribution is relatively smooth. This distribution then evolves
relatively slowly in space and will be governed by the flow field. Center manifold
theory may be applied to such a situation where the slow relaxation of the system in

space and time can be described.

The technique employed in this analysis is an extension of that used by [2] to
describe dispersion in channels with varying flow properties. Their method is an
extension and simple application of the original method proposed by [3]. Center
manifold theory, as developed by [1, 3, 4] is systematic and can easily be adapted to
different problems. An advantage of the center manifold theory is that successive
higher order approximations are obtained easily once the first order approximation is

known.

To start the analysis we assume that the dispersion occurs in a two-dimensional
stratified aquifer, which has horizontally constant hydraulic conductivity and
dispersion coefficients. These parameters vary only with the layers of the aquifers as
they change in the vertical direction. Though the technique is employed in a two-
dimensional setting, we restrict our attention to the evolution in the direction of
average flow. It is assumed that the velocity is known a priori. In addition we assume
that concentration (c) variations in the x direction and time are small so that terms
involving (o/ox) and (&/¢t) are small. This assumption is convenient for the case of a
stratified aquifer where the significant variations in velocities and concentrations occur
in the direction normal to the layers. In addition, only molecular diffusion and local

dispersion (relative to the advective front) are affecting concentration variation along
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the x direction, whereas concentration variation in y-direction is strongly influenced by
the different advective fronts in different layers. Therefore, variations in ¢ in the
vertical y-direction are assumed relatively large compared to those in x direction, and
thus terms involving (&6/0y) may not be small. The assumption of a slow variation in
space and time is important because it reflects the situation where center manifold
theory may be applied. The governing advection dispersion equation for a stratified

aquifer with stratification parallel to x direction is written as

& —u(y) 2+ D y)ZTZS + Dy y)iy—zg @
where c is the contaminant concentration defined as mass of solute per unit volume of
flowing water, u(y) is the groundwater velocity in the x direction, which varies only
normal to the layering along y direction, D,y is the longitudinal dispersion coefficient

and Dy, is the transversal dispersion coefficient.

2. EXISTENCE OF THE CENTER MANIFOLD

To show the existence of the center manifold we follow the path laid out by [2]
for dispersion in channels. Taking the space Fourier transform of Eq. (1) with respect

to X, we have

= 36 — Uik — Dyyk %6 )

2|

where | = \/—_1, k is the wave number coordinate in Fourier space, ¢is the Fourier
transform of the concentration ¢, and the operator 3 is defined as
%
8y2

As we are interested in the slow evolution of the system in space, only small values of

I¢ =Dy 3

the wave number k are relevant. Following standard analysis of bifurcation using

center manifold theory (e.g., [5], Sec. 1.5) we adjoin the equation
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* _
ot
to Eq. (2). By doing this one can consider the last two terms on the right hand side of

0 (4)

Eq. (2) as nonlinear terms and consider the first term as the only linear term in the
system of Egs. (2) and (4). The linearity of the first term is attributed to the fact that
the wave number k is a small parameter, and hence, only linear relations expressing C

in terms of k are significant. Equations (2) and (4) can now be written in the form

d(X)

— 2 =AX+F(X 5
o (X) (5)
where X = (k, €)"is the unknown vector, A is a matrix linear operator defined as
00
A= 6
{0 S} ©)

and F(X) contains the nonlinear terms. The linear operator A has two zero eigenvalues
corresponding to the eigenvectors (1, 0)" and (0, 1)". All the other eigenvalues are
strictly negative. If the two nonlinear terms did not exist, the system would thus decay
exponentially quickly onto the space spanned by the two vectors (1, 0)" and (0, 1) .
However, center manifold theory asserts that in the presence of the nonlinear terms
this is still qualitatively true; it is just that the system approaches a curved manifold

rather than a flat vector space [2].

3. CENTER MANIFOLD PARAMETERIZATION

To apply the center manifold technique to this problem we invoke a formal
procedure described in detail in [1]. We assume the large time variation of the
contaminant may be described in terms of a certain mode function as well as its spatial
derivatives with respect to the direction of the mean flow (x direction). The basic idea
here is to define a mode function that remains constant in the y direction so as to

facilitate the mathematical manipulations involved. Define the relevant mode function

b x+o/2
M(x)=[ [ nc(x,y)dxdy (7)
b x-61/2
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where n is the effective porosity. This function represents the average mass of
contaminant contained in a small strip of width & around point x in an aquifer of width
2b (see Fig. 1). It is assumed that 6 is sufficiently small that the concentration c(X, y)
does not change horizontally within 3, and as such, M(x) can be rewritten as
b
M(x)=0 [nc(x,y)dy 8)
—b
Assuming that the head gradient, J, across the medium in the x direction is constant,
one can write the velocity as u(y)=(Ky(y)/n) J. Further, the dispersion coefficients can
be written as D;(y)=Dx(y)=cr u(y) and D(y)=Dy,(y)=ar u(y), with ¢ and o being

the longitudinal and transverse dispersivity, respectively.

y=b YL S AL S S AL
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ay =0 ’
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c=0
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y=—b ay Vy=0
S S S S
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| X -

Fig. 1. Domain setting and boundary conditions.

The center manifold may be parameterized by the mode function M(x) so that

on the center manifold the concentration takes the form

c(x,y,t)=V[y,M;x] (9)
with evolution governed by

107



A. E. HASSAN

%:G[M;x] (10)

where V and G are the unknown functions that need to be derived. The square brackets
represent a functional dependence (in x) upon not only the argument M, but also on its

derivatives with respect to x. For example V[M; x] means that V depends upon M,

oM [ ox, 8°M | axz, etc. Henceforth, we will use partials to denote total derivative
with respect to a given variable, while a subscript will denote a partial derivative with
respect to that subscripted symbol. Therefore we can now write

oc oV oM oV oMy

—= t+ + +...

ot oM ot oM, ot (11)
:V'[ +VMG+VMXGX +...

Again we invoke the assumption that the variations in the x direction and time are
small, (oc/ox, oc/ ot are small quantities) and seek an asymptotic approximation for the
center manifold of the form

c=V[y,M;x]zl§0v'[y,m;x] (12)
on which the evolution of the mode M(x) takes place according to the equation

a_M:G[M;x]gozojG'[M;x] (13)
ot 1=0

where the superscript | denotes the order of each term. Note that the terms of order |

contain precisely | space and time derivatives. For example the terms of order 3 may

2
]3, 0"M a_u etc. One can obtain the equation of the
OX 8X2 OX

3
be of the form 0 ';/I , [al\/I

OX

center manifold which expresses the concentration distribution in terms of the mode

function M(x) and its evolution in space. This equation will have the form

c(x,y,1) = fo(YIM + T1(Y)My + F2 (Y )My + F3(Y )M yx +... (14)
where the functions fy(y), fi(y), fo(y), fa(y), ... vary with y and are functions of the

known parameters of the flow field as well as the hydraulic and transport parameters
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of the porous medium. Here the subscripts on M denote space derivatives with respect
to x. The evolution of the mode M(x) in time may also be obtained in the form

oM
E:glMx+92Mxx+g3Mxxx+... (15)

Again the functions gi, o, s, ... will be dependent on the known data of the problem.
It should be mentioned here that the actual forms of the relations expressing the center
manifold and the evolution on it may be different than those given above if we assume
that the horizontal velocity u changes in x. For instance, one may have a second order

term for the center manifold equation of the form ( f, uy M,) with or without the term

involving M.
Substituting the above relations into the governing Eqg. (1) one can write
v oM (16)
ot
where 3 is now defined as
2 2
3231+32=D18—2+D28—2 (17)
OX oy

Expressing V as an asymptotic sum and utilizing Eq. (11), the governing equation
becomes

5G'1,

SISV =[SV L+ ISV M 26 1+ 5V . [
1=0 1=0 1=0 1=0 1=0 1=0

(18)

+...+ui[§vl]
X 1=0

Note that the operator J; contains a second derivative with respect to x and therefore,
when acting on any term, it will increase its order by a factor of 2. On the other hand
the operator 3, which contains a second derivative with respect to y, does not change
the order of its operand since only variations in x are considered small. The above

equation is now written in expanded form as
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SIVOvEiav2 v 1=V VeV V3 4]
+[V|8| +V,\1/| +V,6| +V,\3/’| +...][GO+Gl+GZ+G3+...]
+[vO +v1 +v2 +v3 +...][GS+G§+G§+G§+...] (19)
+[VO +V1 +V2 +V3 +. ][GOX+Glx+GZX+G o]
Mux " Myx My "My
+...+u[V)9 +VX +Vy +V);°’ +...]
Equating terms of like order on both sides of (19) gives the following system of
equations:
For terms of order 0
3,v0 =v) GP (20)
For terms of order 1
Sovi=vP v Gt avE GO vl 6P ruvy (21)
For terms of order 2

V23V O =t v G2 v Gl v GO

(22)
1~l,y2 A0 2 ~0 1
+V Gx +VMXGX +VMXXGXX +UuVy
or generally, for terms of order |
I I N : PG ]
Sviesv vty svgleley sV C 20 GRSV )
j=0 j=0 p=1 M) P

The above equations are sequentially solved for the V's and G's in order to get

an expression for the center manifold and the evolution on it.

4. SOLUTION

The above hierarchy of equations can be solved sequentially by employing
some boundary and solvability conditions. We start with the zero order equation and
set G° = 0 which is consistent with the definition of G. Recall that G represents the
time derivative of the mode function M, and as such, G°, the zero-derivative part of G,

should be zero. Therefore, the equation for order 0 becomes
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2,0
A (24)
oy
which upon integrating once with respect to y becomes
0
oy

where a; is a constant to be determined from the boundary conditions. We assume that
the domain represents a confined, stratified aquifer with impervious overlying and
underlying layers. Therefore, the normal velocity and the concentration gradient across
the top and the bottom boundaries are set equal to zero. In addition we assume that the
horizontal extent of the domain is sufficiently large to ensure that the concentration

vanishes on the left and right boundaries (see Fig. 1). Thus

oc
5:0, vy =0 y=+b (26)
c=0, Xx=0&Xx=1L (27)

It should be mentioned here that the contaminant is assumed to be instantaneously
released over a rectangular source having a uniform initial concentration. Utilizing the
condition (26) in Eqg. (25), one gets a; = 0. Equation (25) then yields V = a, where a, is
the integration constant that does not change with y. This constant can be obtained by
imposing the "solvability condition” which is usually determined from the center
manifold equation.

With the definition of the mode function M(x) in mind, one can write the
solvability condition as

b M/S 1=0
nvldy = 28

As mentioned above, this condition is inspired by examining the equation of the center

manifold which can be expanded as

c(x,y)=V[M;x] =vOpviiv2ividy

(29)
= foM+ My + T IMy + FoM o + F3M iy +...
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Multiplying both sides of Eq. (29) by nd and integrating over the aquifer thickness
gives

b b
[ fiMydy+ [ foMy,dy+...] (30)

b
M(x)=no[ [ foMdy+
- b

b b

As the first term is the only term that contains M(x) explicitly and all the other terms

contain higher order derivatives of M(x), it is reasonable to assume that only the first

term is significant. This gives us the solvability condition, which yields the value of \/°
as

vo__M

2nob

Having obtained V°, we can now proceed to solve the first order equation to

(31)

obtain G' and V'. At any order, the solution procedure starts by integrating the
equation over the aquifer width from y = -b to y = b. The left-hand side usually
vanishes or gives a known contribution. The right hand side then yields a linear
function in G*. Substituting the known form of G* back into the original equation and
integrating twice with respect to y we get V' up to two constants. The first one is to be
determined form the boundary conditions, while the second constant is obtained by
utilizing the solvability condition, Eq. (28). To solve the first-order equation we write
it as

sovi=vicltivic? +VI\1AXGQ +uvy (32)

Substituting the known functions G° and V° into the above equation yields

21 1
M
ol _ Gl K(y); My

P2 oy2  2ndb n  2nébag

(33)

or

o2vt Gl M,

= + 34
§y2 25b0['|' K(y)J 2n80a-|- (34)

Integrating the above equation over the width of the domain and utilizing the boundary

conditions give
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1
0=_C° (1 gy Mx (35)
2&)0!1'\] b K(y) nooT

from which G! is obtained as

Gl=- ZbJ1 M, =B;M, (36)

nKay

It is interesting to notice that G is of advective form; the fraction has the form of a
velocity and My is the gradient of the mode function M(x). Now by substituting Eq.
(36) into Eg. (35) and integrating once with respect to y, one obtains

vt My I L 4y M,
&  napKgr® K(Y) W 2ndbar

y+ag (37)

where the integration constant a; can be determined through the boundary conditions.
To do so, the integral on the right-hand side of (37) needs to be evaluated with the
form of the hydraulic conductivity distribution known (e.g., from fitting to field
measurements). In the next section, we hypothesize a form for the hydraulic
conductivity, K(y), for the Cape Cod site located in Massachusetts, USA, where there
is a large set of tracer test data which will be used to validate the results of our

approach.

5. APPLICATION TO CAPE COD TRACER DATA

Data from the Cape Cod experiment is used to test the applicability of the
assumptions employed in developing the center manifold approach. Specifically, the
predictions of the one-dimensional evolution Eq. (15) with terms up to the third order

are compared to the field observations. In order evaluate the integral on the right hand

side of Eq. (32) assume the form K‘l(y):R(1+ y2), for F(y) where y is

normalized with respect to the domain width. The parameter R is determined from the
field values of conductivity, porosity and hydraulic gradient at Cape Cod. The mean
hydraulic conductivity for this site is about 110 m/day and the effective porosity, n, is
about 0.39 [6]. The hydraulic gradient, J, at the site varies between 0.0014 and 0.0018.
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Therefore, if we take n = 0.39, J = 0.0016, and R = 0.0138, we get an average
conductivity of 108.38 m/day and an average flow velocity of 0.44 m/day.

The bromide concentration at 13 days after the tracer is injected is used as the
initial condition for the center manifold evolution equation. The initial M(x) is
calculated using Eqg. (8) and then the evolution equation is solved using an implicit
finite difference scheme. Figure 2 compares M(x) calculated from the experimental
data at Cape Cod with the center manifold solution. The theory fits the field data better
as time progresses. The first and second longitudinal moments obtained through the
center manifold theory may also be compared to those obtained from the field data [7].

This comparison is shown in Fig. 3, and the prediction is quite good.

6. CONCLUSIONS

The equations resulting from the center manifold approach are easier to solve
than the original advection dispersion equation. We need only solve a one-dimensional
ordinary differential equation of the form (16) to obtain M(x) and predict the
longitudinal spatial moments for the moving tracer. Results indicate that the theory
adequately predicts the center of mass and second longitudinal moment at Cape Cod.
The procedure for computing more accurate higher order approximations is purely

mechanistic once the first approximation is obtained.
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Fig. 2. Simulated and observed mode function at different times for a vertical Bromide
concentration distribution. Solid line is the center manifold approach and circles are
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Fig. 3. Simulated longitudinal first and second spatial moments for the Cape Cod
experiment with vertical cross sectional simulation. Solid line is the center manifold
approach and circles show actual spatial moments of bromide from [7].
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