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ABSTRACT 

 

 An asymptotic description of dispersion in stratified aquifers using the center 

manifold theory is presented. The system is assumed to evolve slowly in time and 

space thus allowing the center manifold approach to be applicable. The spatial 

variability in the process is accounted for by using spatially variable conductivity and 

dispersion coefficients. The approach presented herein focuses on longitudinal 

dispersion in the direction of mean flow. An important advantage of the proposed 

approach is that higher order asymptotically correct approximations are easily obtained 

once the first approximation has been derived. In addition, the approach yields a one-

dimensional ordinary differential equation that can be easily solved in comparison 

with the two-dimensional advection dispersion equation. The predictions of the center 

manifold equations closely match the observed spatial moments for the Cape Cod 

tracer experiment of Massachusetts, USA. 

 

KEYWORDS: Contaminant Transport, Stratified Aquifers, Center Manifold Theory, 

Advection Dispersion Equation, Groundwater Transport. 

 

1. INTRODUCTION 

 

In many physical problems the system evolves quickly towards a certain state 

and thereafter it relaxes relatively slowly in space and time. The center manifold 

theory has been developed to describe the slow evolution of such systems. The theory 

provides a systematic approach to calculate a sequence of successive approximations 

to the evolution of the principle structure in space and time [1]. Roughly, the theory 

states that if the reference state of the system contains N zero eigenvalues and if all the 

other eigenvalues are negative, then the system evolves exponentially quickly towards 
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an N-dimensional manifold called the center manifold. The system then relaxes 

relatively slowly on this center manifold according to the evolution of some dominant 

modes for which differential equations can be derived. 

When a contaminant is first released in a porous medium, two basic 

mechanisms combine to distribute it in time. The contaminant is advected downstream 

by the average flow field, while being dispersed longitudinally and laterally by the 

fluctuating velocity field. These two components combine to ensure that, on average, 

the mean concentration distribution is relatively smooth. This distribution then evolves 

relatively slowly in space and will be governed by the flow field. Center manifold 

theory may be applied to such a situation where the slow relaxation of the system in 

space and time can be described. 

The technique employed in this analysis is an extension of that used by [2] to 

describe dispersion in channels with varying flow properties. Their method is an 

extension and simple application of the original method proposed by [3]. Center 

manifold theory, as developed by [1, 3, 4] is systematic and can easily be adapted to 

different problems. An advantage of the center manifold theory is that successive 

higher order approximations are obtained easily once the first order approximation is 

known. 

To start the analysis we assume that the dispersion occurs in a two-dimensional 

stratified aquifer, which has horizontally constant hydraulic conductivity and 

dispersion coefficients. These parameters vary only with the layers of the aquifers as 

they change in the vertical direction. Though the technique is employed in a two-

dimensional setting, we restrict our attention to the evolution in the direction of 

average flow. It is assumed that the velocity is known a priori. In addition we assume 

that concentration (c) variations in the x direction and time are small so that terms 

involving ( x / ) and ( t / ) are small. This assumption is convenient for the case of a 

stratified aquifer where the significant variations in velocities and concentrations occur 

in the direction normal to the layers. In addition, only molecular diffusion and local 

dispersion (relative to the advective front) are affecting concentration variation along 
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the x direction, whereas concentration variation in y-direction is strongly influenced by 

the different advective fronts in different layers. Therefore, variations in c in the 

vertical y-direction are assumed relatively large compared to those in x direction, and 

thus terms involving ( y / ) may not be small. The assumption of a slow variation in 

space and time is important because it reflects the situation where center manifold 

theory may be applied. The governing advection dispersion equation for a stratified 

aquifer with stratification parallel to x direction is written as 
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where c is the contaminant concentration defined as mass of solute per unit volume of 

flowing water, u(y) is the groundwater velocity in the x direction, which varies only 

normal to the layering along y direction, Dxx is the longitudinal dispersion coefficient 

and Dyy is the transversal dispersion coefficient. 

 

2. EXISTENCE OF THE CENTER MANIFOLD 

 

To show the existence of the center manifold we follow the path laid out by [2] 

for dispersion in channels. Taking the space Fourier transform of Eq. (1) with respect 

to x, we have 

 ĉkDĉuikĉ
t

ĉ 2
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
  (2) 

where i = 1 , k is the wave number coordinate in Fourier space, ĉ is the Fourier 

transform of the concentration c,  and the operator  is defined as 
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As we are interested in the slow evolution of the system in space, only small values of 

the wave number k are relevant. Following standard analysis of bifurcation using 

center manifold theory (e.g., [5], Sec. 1.5) we adjoin the equation 
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to Eq. (2). By doing this one can consider the last two terms on the right hand side of 

Eq. (2) as nonlinear terms and consider the first term as the only linear term in the 

system of Eqs. (2) and (4). The linearity of the first term is attributed to the fact that 

the wave number k is a small parameter, and hence, only linear relations expressing ĉ 

in terms of k are significant. Equations (2) and (4) can now be written in the form 
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where X = (k, ĉ)T 
is the unknown vector, A is a matrix linear operator defined as 
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and F(X) contains the nonlinear terms. The linear operator A has two zero eigenvalues 

corresponding to the eigenvectors (1, 0)
T
 and (0, 1)

T
. All the other eigenvalues are 

strictly negative. If the two nonlinear terms did not exist, the system would thus decay 

exponentially quickly onto the space spanned by the two vectors (1, 0)
T
 and (0, 1)

T
. 

However, center manifold theory asserts that in the presence of the nonlinear terms 

this is still qualitatively true; it is just that the system approaches a curved manifold 

rather than a flat vector space [2]. 

 

3. CENTER MANIFOLD PARAMETERIZATION 

 

To apply the center manifold technique to this problem we invoke a formal 

procedure described in detail in [1]. We assume the large time variation of the 

contaminant may be described in terms of a certain mode function as well as its spatial 

derivatives with respect to the direction of the mean flow (x direction). The basic idea 

here is to define a mode function that remains constant in the y direction so as to 

facilitate the mathematical manipulations involved. Define the relevant mode function 
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where n is the effective porosity. This function represents the average mass of 

contaminant contained in a small strip of width  around point x in an aquifer of width 

2b (see Fig. 1). It is assumed that  is sufficiently small that the concentration c(x, y) 

does not change horizontally within , and as such, M(x) can be rewritten as 

 


b

b

dy)y,x(nc)x(M    (8) 

Assuming that the head gradient, J, across the medium in the x direction is constant, 

one can write the velocity as u(y)=(Kxx(y)/n) J. Further, the dispersion coefficients can 

be written as D1(y)=Dxx(y)=L u(y) and D2(y)=Dyy(y)=T u(y), with L and T being 

the longitudinal and transverse dispersivity, respectively. 

 
 

Fig. 1. Domain setting and boundary conditions. 

The center manifold may be parameterized by the mode function M(x) so that 

on the center manifold the concentration takes the form 

 ]x;M,y[V)t,y,x(c   (9) 

with evolution governed by 
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where V and G are the unknown functions that need to be derived. The square brackets 

represent a functional dependence (in x) upon not only the argument M, but also on its 

derivatives with respect to x. For example V[M; x] means that V depends upon M, 

x/M  , 22 x/M  , etc. Henceforth, we will use partials to denote total derivative 

with respect to a given variable, while a subscript will denote a partial derivative with 

respect to that subscripted symbol. Therefore we can now write 
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Again we invoke the assumption that the variations in the x direction and time are 

small, ( xc  / , tc  / are small quantities) and seek an asymptotic approximation for the 

center manifold of the form 

 
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on which the evolution of the mode M(x) takes place according to the equation 
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where the superscript l denotes the order of each term. Note that the terms of order l 

contain precisely l space and time derivatives. For example the terms of order 3 may 

be of the form 
3
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, etc. One can obtain the equation of the 

center manifold which expresses the concentration distribution in terms of the mode 

function M(x) and its evolution in space. This equation will have the form 

  xxx3xx2x10 M)y(fM)y(fM)y(fM)y(f)t,y,x(c   (14) 

where the functions f0(y), f1(y), f2(y), f3(y), ... vary with y and are functions of the 

known parameters of the flow field as well as the hydraulic and transport parameters 
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of the porous medium. Here the subscripts on M denote space derivatives with respect 

to x. The evolution of the mode M(x) in time may also be obtained in the form 

 



xxx3xx2x1 MgMgMg

t

M
  (15) 

Again the functions g1, g2, g3, … will be dependent on the known data of the problem. 

It should be mentioned here that the actual forms of the relations expressing the center 

manifold and the evolution on it may be different than those given above if we assume 

that the horizontal velocity u changes in x. For instance, one may have a second order 

term for the center manifold equation of the form ( f2 ux Mx) with or without the term 

involving Mxx. 

Substituting the above relations into the governing Eq. (1) one can write 
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where  is now defined as  
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Expressing V as an asymptotic sum and utilizing Eq. (11), the governing equation 

becomes 
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Note that the operator 1 contains a second derivative with respect to x and therefore, 

when acting on any term, it will increase its order by a factor of 2. On the other hand 

the operator 2, which contains a second derivative with respect to y, does not change 

the order of its operand since only variations in x are considered small. The above 

equation is now written in expanded form as 
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Equating terms of like order on both sides of (19) gives the following system of 

equations: 

For terms of order 0 
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For terms of order 1 
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For terms of order 2 
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or generally, for terms of order l 
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The above equations are sequentially solved for the V's and G's in order to get 

an expression for the center manifold and the evolution on it. 

 

4. SOLUTION 

 

The above hierarchy of equations can be solved sequentially by employing 

some boundary and solvability conditions. We start with the zero order equation and 

set G
0
 = 0 which is consistent with the definition of G. Recall that G represents the 

time derivative of the mode function M, and as such, G
0
, the zero-derivative part of G, 

should be zero. Therefore, the equation for order 0 becomes 
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which upon integrating once with respect to y becomes 
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where a1 is a constant to be determined from the boundary conditions. We assume that 

the domain represents a confined, stratified aquifer with impervious overlying and 

underlying layers. Therefore, the normal velocity and the concentration gradient across 

the top and the bottom boundaries are set equal to zero. In addition we assume that the 

horizontal extent of the domain is sufficiently large to ensure that the concentration 

vanishes on the left and right boundaries (see Fig. 1). Thus 
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It should be mentioned here that the contaminant is assumed to be instantaneously 

released over a rectangular source having a uniform initial concentration. Utilizing the 

condition (26) in Eq. (25), one gets a1 = 0. Equation (25) then yields V = a2 where a2 is 

the integration constant that does not change with y. This constant can be obtained by 

imposing the "solvability condition" which is usually determined from the center 

manifold equation. 

With the definition of the mode function M(x) in mind, one can write the 

solvability condition as 
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As mentioned above, this condition is inspired by examining the equation of the center 

manifold which can be expanded as 
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Multiplying both sides of Eq. (29) by n and integrating over the aquifer thickness 

gives 
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As the first term is the only term that contains M(x) explicitly and all the other terms 

contain higher order derivatives of M(x), it is reasonable to assume that only the first 

term is significant. This gives us the solvability condition, which yields the value of V
0
 

as 
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Having obtained V
0
, we can now proceed to solve the first order equation to 

obtain G
1
 and V

1
. At any order, the solution procedure starts by integrating the 

equation over the aquifer width from y = -b to y = b. The left-hand side usually 

vanishes or gives a known contribution. The right hand side then yields a linear 

function in G
1
. Substituting the known form of G

1
 back into the original equation and 

integrating twice with respect to y we get V
1
 up to two constants. The first one is to be 

determined form the boundary conditions, while the second constant is obtained by 

utilizing the solvability condition, Eq. (28). To solve the first-order equation we write 

it as 

 0
x

0
x

1
M

01
M

10
M

1
2 uVGVGVGVV

x
  (32) 

Substituting the known functions G
0
 and V

0
 into the above equation yields 
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or 
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Integrating the above equation over the width of the domain and utilizing the boundary 

conditions give 
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from which G
1
 is obtained as 
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It is interesting to notice that G
1 

is of advective form; the fraction has the form of a 

velocity and Mx is the gradient of the mode function M(x). Now by substituting Eq. 

(36) into Eq. (35) and integrating once with respect to y, one obtains   
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where the integration constant a1 can be determined through the boundary conditions. 

To do so, the integral on the right-hand side of (37) needs to be evaluated with the 

form of the hydraulic conductivity distribution known (e.g., from fitting to field 

measurements). In the next section, we hypothesize a form for the hydraulic 

conductivity, K(y), for the Cape Cod site located in Massachusetts, USA, where there 

is a large set of tracer test data which will be used to validate the results of our 

approach. 

 

5. APPLICATION TO CAPE COD TRACER DATA 

 

Data from the Cape Cod experiment is used to test the applicability of the 

assumptions employed in developing the center manifold approach. Specifically, the 

predictions of the one-dimensional evolution Eq. (15) with terms up to the third order 

are compared to the field observations. In order evaluate the integral on the right hand 

side of Eq. (32) assume the form )y1(R)y(K 21  , for F(y) where y is 

normalized with respect to the domain width. The parameter R is determined from the 

field values of conductivity, porosity and hydraulic gradient at Cape Cod. The mean 

hydraulic conductivity for this site is about 110 m/day and the effective porosity, n, is 

about 0.39 [6]. The hydraulic gradient, J, at the site varies between 0.0014 and 0.0018. 
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Therefore, if we take n = 0.39, J = 0.0016, and R = 0.0138, we get an average 

conductivity of 108.38 m/day and an average flow velocity of 0.44 m/day. 

The bromide concentration at 13 days after the tracer is injected is used as the 

initial condition for the center manifold evolution equation. The initial M(x) is 

calculated using Eq. (8) and then the evolution equation is solved using an implicit 

finite difference scheme. Figure 2 compares M(x) calculated from the experimental 

data at Cape Cod with the center manifold solution. The theory fits the field data better 

as time progresses. The first and second longitudinal moments obtained through the 

center manifold theory may also be compared to those obtained from the field data [7]. 

This comparison is shown in Fig. 3, and the prediction is quite good. 

 

6. CONCLUSIONS 

 

 The equations resulting from the center manifold approach are easier to solve 

than the original advection dispersion equation. We need only solve a one-dimensional 

ordinary differential equation of the form (16) to obtain M(x) and predict the 

longitudinal spatial moments for the moving tracer. Results indicate that the theory 

adequately predicts the center of mass and second longitudinal moment at Cape Cod. 

The procedure for computing more accurate higher order approximations is purely 

mechanistic once the first approximation is obtained. 
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Fig. 2. Simulated and observed mode function at different times for a vertical Bromide 

concentration distribution. Solid line is the center manifold approach and circles are 

for actual Cape Cod data. 
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Fig. 3. Simulated longitudinal first and second spatial moments for the Cape Cod 

experiment with vertical cross sectional simulation. Solid line is the center manifold 

approach and circles show actual spatial moments of bromide from [7]. 
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 تطبيق طريقة المشعب المركزي عمى انتشار المموثات في الخزانات الطبقية
 

يقدم البحث وصفاً لانتشار المموثات في الخزانات الطبقية باستخدام طريقة المشعب المركزي، ويفترر  نن 
عممية الانتشار تتطور ببطء مع الزمن والمسافة مما يسمح بتطبير  نرريرة المشرعب المركرزي، ومرد ترم اخر  
التباين المكاني لخواص النرام في الاعتبار باستخدام معاملات متغيرة لخواص الخزان مثل معامل النفا ية 
ومعامررل الانتشررار، والطريقررة المقدمررة فرري ةرر ك الدراسررة تركررز عمرره الانتشررار فرري الات رراك الطررولي المرروازي 

دمة يمكن الحصول عميهرا بسرهولة لحركة المياك ال وفية، ومن نةم مميزات ة ك الطريقة نن الحمول الأعمه 
بم رررد الحصررول عمرره الحررل مررن الدر ررة الأولرره وبافإررافة الرره ةرر ا فررىن ةرر ك الطريقررة ترر دي الرره معادلررة 
تفاإمية في بعد واحد يمكن حمها بسهولة نكثر من معادلة الانتشار الأصمية في بعردين، ومرد و رد نن حرل 

نتائج مريبة اله حرد كبيرر مرن معردلات الانتشرار المقاسرة  معادلة الانتشار باستخدام ة ك الطريقة ي دي اله
في الطبيعة عندما ترم تطبير  ةر ك الطريقرة عمره ت رارب الانتشرار فري منطقرة  كيرب كرود  الوامعرة فري ولايرة 

  ماساتشوتس  بالولايات المتحدة الأمريكية. 


