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In the parallel chord Vierendeel girder it is the usual practice
to give the same stiffness to the upper and lower chords. The
same rule is often applied also to the polygonal chords, so that
| - .
g~ —b—L where 1, and I are the moments of inertia and S, and S,

u L

are the lengths of the upper and Jower chords in each panel.

This special case of giving equal stiffness to the chords
renders the caleulation of the highly indeterminate Viererideel
girder relatively simple. The longitudinal deformations due to
the axial forces are generally neglected. In this way, the verticai
displacemenfs of the upper and lower panel points will be the
same. As a resalt, the upper and lower chord members will
have equal deflections, so that, with equal chord stiffness, the
moments along a vertical section through the girder will be the
same, i.e. M = M (Fig. 1)

Furthermore, if the Vierendeel girder is subject only to
vertical panel loads, the horizontal thrusts in the two chords
will be equal and opposite, i.e. H = -H. Also, by taking two
sections 2-2' and 3-8’ at the ends of the panel 2-3, and considering
the equilibrium of each chord separatelv, it will be easily seen
that the value of H in the framed panel is constant (Fig. 1).
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Whatever main system is adopted in the solution of this
indeterminate structure, the redundant values, however, form
together a system of internal forces and couples, which are in
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Fig 1

equilibrium amongst themselves and which produce no reactions.
Consequently, the corresponding moments, axial and shearing
forces due to these redundant values along a vertical section s-s
through the girder will be in equilibrium (Fig. 2). In other

L5 - |3 Vr=—Vr
%1% Hr = —Hr ~
H..h

words Vo, — -V, H', == .H, and M’; — M, — —5— .

-, Referring to sections 2-2° and 3-3°:

2 M,z = H,.. hz and 2 M,g = H,-. h., and .

therefore —\1}? = M., = l%' Thus, the moments M in both
3

chords due to the redundant values are equal and inversely
proportional to the corresponding height of girder. It will be

sufficient, therefore, to know a single redundant moment M, in a

certain panel in order to determine the rest of the M,-diagrams
of this panel.
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Consequently, for a Vierendeel girder with equal chord
stiffness and having n panels, there will be'only n unknowns
instead of 3n for the general type. The solution of the special
type of Vierendeel girder is thus relatively simple. '

A.—~Tur Meraon or Erastic CourLEs

This method is suitable for the caleulation of the speciul
type of a Vierendeel girder with equal chord stiffness subject 1o
indirect panel point loading. The idea involved therein is the
introduction of the term * Elastic Couple”, which is defined as
the moment of two equal and opposite elastic weights, It is
represented by a vector in the plane of the structure pointing
in the direction of the forward motion of a right hand screw.

If now, the Vierendeel girder is referred to the main SYEfon
shown in Fig. 8, the girder will act as a bow string girder witl
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stiff chords and hinged verticals. An additional hinge is further
provided at “a”, and a movable support is introduced at “b”,
The introduction of these hinges reduces the number of
redundant values, but the system is still statically indeterminate.
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Neglecting the longitudinal strain due to the axial forces,
the deflections of the two chords will be equal. Remembering,
also, that the chords have equal stiffness, the moments M°
produced in the chords of the main system at every vertical
section will be equal. However, with regard to the stresses

produced in the chords themselves, these moments will have
o

opposite signs. The corresponding elastic weights T will

be equal and opposite. Consequently, the elastic weights of the
upper and lower chords can be represented by normal vectors
pointing respectively towards and away from the reader. Every
two corresponding elastic weights thus form an elastic couple.

Referring to the bow string with stiff chords as a main
system, Fig. 3, the moments M°® due to the external loads will
give the elastic couples C°.  Since the verticals are hinged at both
ends, these couples will arise from the chord members only.
They fulfil the condition of equilibrium, but not the elastic
conditions of the highly indeterminate Vierendeel girder.

a) Moments and Llzsiic Weighls :

Fig. 4

~ Similarly, the moments M, produced By the redundant values,
Fig. 4, will give elastic couples C,. This is clearly seen in the
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case of the equal chord moments. These moments, however, are
transmitted to the verticals and will thus give pairs of equal and
opposite elastic weights which in turn form elastic couples.

Remembering that the chord moments in each panel are
proportional to the corresponding height, the elastic couples due
to the chord momentsin each parel willinvolve only one unknown.
This applies also to the end verticals. The elastic couples due
%o the moments in the intermediate verticals, however, will contain
two unknowns, namely, the chord moments of the two adjacent
panels.

By adding the M,-diagrams produced by the additional
redundant values to the M°-diagrams, the correspouding bending
moment diagrams of the Vierendeel girder are obtained. Similar
to the M°- and M,-diagrams, the resultant M-diagrams give
equal values of moments in the upper and lower chords.

In order to fulfil the elastic conditions of the indeterminate
Vierendeel girder, the elastic weights due to the resultant
moments M in each closed panel must be in equilibrium. In
other words, the sum of the resultant elastic couples in every
panel must be zero.

Consequently, the elastic weights due to M, should be in
equilibrium with the elastic weights due to M® and the
corresponding elastic couples should halance each other. This
condition must be fulfilled in every panel, thus giving the key
to the solution of the Vierendeel girder.

Starting at the left end panel, the elastic couples belonging
to this panel are functions of the moments M, and M,. If the
elastic couple due to M® is known, the equilibrium of the elastic
couples supplies a relation between M, and M,.

Going over to the next panel, it is now possible to express
the elastie couples of the vertical 2-2° as function of M., only.
Consequently, the elastic couples in the second panel will be
functions of M, and M,. If the elastic couple due to M® in this
panel is known, the equilibrium of all elastic couples will give the
relation between these twc moments.
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The processis continued from panel to panel until the rightend

panel is reached. | Having found the relation between Myand M,

from the equilibrium of the elastic couples in the preceding panel,

the elastic weights and respective couples in this last panel will-

be functions of the moment M, only. This moment can be
definitely found from the equilibrium of the elastic couples due
to M and M® in this panel.

Having determined M,, the solution is resumed going back
from panel to panel and determining the unknown mowments in
every step. By the time the left end panel is reached, all
redundant moments in the Vierendeel girder would have been
obtained. '

Numerical example :

Fig. 5a shows a Vierendeel girder with equal chord
stiffness, hinged at one end and freely supported at the other.
A single load P = 1-0 ton is applied at joint 3.

The moment of inertia I of the straight upper chord is
constant., On the other hand, the moment of mertia I of the
polygonal lower chord is variable. It satisfies, however, the
condition l; cos ¢ = I, where ® = the inclination of the lower
chord in each panel.

Petoloo
L 3 5 K]
N §
tom I I ;
~
%
S
A
/4
J Jeosotwr "
(3
i ‘ s
L ) 4x50 =20.07 |

Fig. 5 «

o



— 9 —

The verticals 1-2, 3-4 and 5-6 have moments of inertia equal
to 1'014 I, 1-00 I and 0-294 1 respectively (?).

The M° diagrams of the main system for upper and lower
chords are drawn in Fig. 3b. As already explained, these two
diagrams give equal and opposite values. The correspondisy
resultant elastic weights W act at the third points of the different
chord members. They are indicated at their points of application.
- Further, the end moments M which are produced by the redun.
dant values are shown in Fig. 5c. The respective moments in
the upper and lower chords are equal and opposite. In the same
panel these moments are proportional to the height of the girder.
The corresponding elastic weights W, are concentrated in the
third points of each member. They are written opposite to their
points of application.

Starting at the left end panel, every pair of equal and

opposite elastic weights is combined into an * Elastic Cou; 7,
Figs. 5b and c.  All couples containing the moment M, .ie

Q
Me disgram 3 o B
TS N N
H -
‘ ] L- 1 T

‘ +4.69 3 +463 4313 s +3/3 4156 3 +2.56 7

M®* diagram Fig. 5b

(*) This example is taken from Prof. L. C. Maugh’s paper “ Stresses
and Deformations in Two-hinged Vierendeel Truss Arches ", Proceedings
of the Fifth International Congress of Applied Mechanics, 1938,
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then added together, Fig. 6. The chords 1-3 and 2-4 supply
two couples, while each of the verticals 1-2 and 3-4 gives one
single couple in M,. Further, there is another couple containing

-1 M, Al 854, <085 A -y M 46 M,
=¥, ~2.5M, - 254, 234, ~203H, -25A L 25M, -40H, 7
Ei
~ 473 & -(%— £ ,;-e«g— «;g— "%‘zg—“}; "% - 4TI
ey Y 3 O§ s ¥ os % -~
S ° Q Ny« o] z B < ¢ b
: $ BTt ——
N ~ s c2SH, 20% 294, 25w, 3,
- ” v
3! 725M 3
: Lom, 2 At AN A + M, A
H

Fig. 5¢

the moment M, from the M,-diagram of the vertical 3-4. There
is also the elastic couple of the M® diagrams of the chord members
1-3 and 2-4. All six couples are now in equilibrium. This
condition supplies the relation between M, and M, as shown under
the first panel in Fig. 6.

Going over to the next panel, the vertical 3-4 supplies again
two couples containing M, and M, respectively. The chord
members 3-5 and 4-6, however, supply two couples containing
M; only. Another two couples in M, and M; are supplied” by
the vertical 5-6. Further, there are two couples provided by the
M° diagrams. Ou tie whole, there are thus eight elastic couples
in the second punel. However, the couple due to M, in the
vertical 3-4 can be substituted by anoth:: couple in M, from the
relation obtained before between M, and M,.

Consequently, there will be five couples depending on M,
which can be replaced by a single resultant couple. Also the two
couples given by the M° diagrams can be added together. In
this way, the second panel gives a couple in M, and a couple in
M; which are in equilibrium with the resultant couple due to M.
This condition supplies the relation between M, and M, which is
given under the second panel in Fig. 6. V '
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A similar process is then carried out for the third panel
siving the relation between M; and M,. This relation 1S written
under the third panel in Fig. 6.

Finally, the calculation is extended to the right-hand panel.
All elastic couples are referred to the moment Mi The equili-
brium of all couples in this panel gives the numerical value of
M, as shown.

Having found M,, the end moment M; can be determined
from the relation obtained before for the equilibrium of the clastic
couples in the third panel. Similarly, M, is caleulated from the
relation between M, and M, obtained from the second panel,
Finally, M, is found from the relation between M, and M, which
has been derived from the equilibrium of the ‘elastic couples in
the first panel.

Needless to say, the process explained replaces the solutior
of the four elastic equations of the Vierendeel girder which are
supplied by the equilibrium of the elastic couples in each panel.
It is a method of solving these equations successively from panel
to panel.

However, all elastic equations can be written down and
solved algebraically in the ordinary way. They have the following
form :

M, M, M, My e,
a, a, = a,
b, b, by = b,
C, C3 Cq = Cp
d, dy = dy

The Vierendeel girder is thus referred to system of
3 moment equations.

B.—Tue Meruon or SBUCCESSIVE APPROXIMATIONS

(a) The Panel Method () :

If any panel abed of the Vierendeel girder shown in Fig. 7a
is separated by the sections 1-1 and 2-2, the forces and couples

(') Prof. L. C. Maugh, © Statically indeterminate Structures 7, 1947,



acting on the panel will be as shown in Fig. 7b. These forces

and couples are of course in equilibrium with the external loads
P, and P,.
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Fig. 7a
My
M Wl-2M,
oz —— 2
M-zH, N .. "’N% T £,
Z ""*T c -
AT 1N
M2, ...1!1('4 L bl MW -2p,
£ ™ A 14€ 7z
A A
. - 3
7 5
Fig. 7b

» To simplity the analysis, the force system in Fig. 7b is
resolved into three equivalent force systems as shown in Fig. 7c,
7d and 7e. The forces given in Fig. 7c represent tbe action of
the external forces, if the panel were hinged to the adjacent
chord members. The force systems given by 7d and Te are due
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to the moments M; and M, respectively. They represent the
effect of continuity between the panels.

The following notations are used hereafter :
M = Bending moment at 1-1 due to external loads only
V = Shear in panel abed
1 = Panel length

h, and b, = Height of panel at 1-1 and 2-2
K >=~11— .value of chord members ab and cd

K, and K, = % -values of members ad and cd

K K _ ha—h,
r o= , S a=

K" &, b,

and

D=6+r+s+a(2a+as+ 25+ 6)

The moments in the panel due to the force system of
Fig. 7c are essential for the stability of the structure. For this
reason, they have been designated “ Primary Moments ™.

M—V
M, =M = c_x;%l_)__![g +s4+a 24 s)] and
. \ aM—Vl
l\lba = .L\'ch = '—E)D—‘—‘(?) + r + cx)

They can be obtained directiy as end moments by the slope
deflection equations.

The force systems shown in Figs. 7d aud 7e represent the
effect of the internal moments in the adjacent panels, and, there-
fore, exist as a resalt of contr vty of the panels. The moments
M” and M’ sroduced by these two force systems respectively are
not necessary for the structure stability in the panel abed. They
will be defined as “Secondary Moments”. The magnitude of
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these secondary moments can be computed without difficulty by
the following equations :

M =M =M

” v r(l+q)
Mh —Mcd ————‘"“D““‘—'Ml

0 9wt __ S (1+G)
My =My = =S,

v _ e = g 8 (1)
M= MY =+ D M,

. r r(l1+a) s (14a) s (1+a)?*
Evidently the constanis D> 5 R D and D

are correction factois that can be computed for each panel. The
primary moments M’ in the adjacent panels can be used for the
first approximation of M, and M,, and the corrections can be
computed as for any method of successive approximations.
Numerical example : '
In order to illustrate the “ Panel Method ” explained above,
the same numerical example given before is solved hereafter.

Primary Moments M’

My = Mo = 1;-’%3% [340-751—0-375 (24+0761)]
== —0925
Mo = My = %‘l%’ (34+1-184—0375) = —1-298
01493 T54-0-25X 5
Moy, = Mo = 0“9;;7‘_;’;‘; 3X 23 4217-0'149X
(24217)] = 40210
01493754+ 0-25%5 i}
My—= My = Z<>Z7 4;; X2 (340764
—0r149) = 40167
17625 +025X 5
Mg Mo = 00X < l”ogg b,2"x [3 £0-764+0176 X
(240-764)] = 40347
. . 2." .2"
Wy Mg = TITOXESHIIND (54 9.1704-0176)

2% 10°346
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06X 1254025 X
porm Mg = OX L2 XY (341184406 X

(24+1:184)] = 40432

, , 06X 125402
Mo = Moz - X.,X;flo.,ox (84075 5140-6)

— +40-308

The corrections due to continuity are obtained from the

recorded corvection factors. The order in which the corrections
are carried out is indicated by arrows.  For example, the correc-
tions in the second panel for the primary moment 1-298 in the
first panel are :
M, - — (0:1022) (—1-298) = + 0132
My — + (0°0869) (—1-298) — 0-113

I

Further, the corrections in the third panel for the corrected
moment (4 (°167—0°113=0'054) are :

M7, = — (021) (0:054) = — 0011
Mj, = 4 (0°2466) (0:054) = + 0013

The process is continued in this way until no more correc-
tions are needed. The process converges after four successive

corrections as seen in Fig. 8.

r o rlf+x) J0R2 .0869|.2/0 .2466).0533 0853
5t o L4 RV pheb §35 s

S(T+ot) s(rea)’ |-0853 0533|2466 .210|.0869 .s022
——-———o y-—-——” — - - s - -

Secondapy M. Was32 rdMeost yishoe0ze 40038

4.037  ..023 1..092 ..078014+.035 ..043)

N .003 -.002k/+.0/7 ~0i9|¥ 4007 _.c0s
004 -.003 -

Fromary M. |.925 _r298 [,.z/o 4416 [,.547 *.437}‘,.432 +.308

Resoltt M. 1_.888 _1.32/|¢.440 -.029|, 388 4389 4. 401 4341

&
recge Y Lozes | zi70 9 . aver N

s = 0757 = 2470 = 0.764 = 1784

o x.93725 w-0.745 w 0.176 = 0.60

D« 5,505 ;_;ii‘."_——-J-&M_\J o102
L ?

?‘2" P= r Lorr N ‘

Fig. 8
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Modi fication of the Panel Method :

The panel method explained in the previous paragraph
assumes hinges just outside the panel in question. The moments
of the Vierendeel girder at these points are not minimum. “in
the contrary, the bending moment diagrams for panel point
loading show straight lines from panel to panel, so that the
maximum bending moments occur just where the hinges urc
introduced. For this reason, several corrections are needed until
the process finally converges. Furthermore, the first corrections
at least will be, at certain points, nearly of the same magnitude

as the primary moments.

The idea involved in the modification, which will be proposed,
is to introduce ‘the hinges as far as possible at the points of
contraflexure, which are expected in the Vierendeel girder.
Referring to the bending moment diagrams of such a system, it
is easily seen that the points of zero moments coincide to a fair
degree of approximation with the middle points of the panels.
If, now, two halves of the adjacent panels are added to each panel,
and the method of successive approximations is applied to such
division, the number of correciions needed will be reduced, and
the secondary moments will be relatively small in comparison

with the primary moments.

Fig. 9 shows one of the proposed divisions and the force
system acting upon it. Such a division is obtained by téking
sections 1-1 and 2.2 through the mid-points of the two adjacent
panels. Similar to the panel method explained before, this force
system is divided into the primary system shown in Fig. 9a, and
the two secondary systems given in Figs. 9b and 9c¢ respectively.
Here again, the force system in Fig. 9a represents the forces acting
upon the division, if the four ends were really hinged. The tw :
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other force systems in Figs. 9b and 9c represent the effect of
continuity.

Fig. 9a

Fig. 9b Fig-9¢

In working out the end moments due to the primary force
svstem, the panel method as explained before can be applied.
Fig. 10a shows the force system on the panel abed, due to the
primary force system shown in Fig. 9a. The loads acting at the
mid-points of the adjacent panels are simply shifted parallel to
themselves to the corners of the panel abed, introducing four
couples s indicated.  This system is now treated as if it were
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built up of primary and secondary sy-tems. Using the same
coefficients as in the previous panel mcihod, the corresponding

moments are :

— /%
“ ?,._
4,
14
R S
EZ,:.M)-gf Lo -4 B0
Fig. 10 a
. o a(Mp 405Vl M
M= M= =5 el —e— 5 Gix
. Vol s (1+a) '\1
(Hy—b,)— Z)-—— J)+ R(hz
. M, 05V 14+«
and M \ch~ a(My+ );)__I_;)__ (s;+ rda)f —r— r+a + X
\I| \WL ] -8 (l+a\2 '\IR "YR 1 .
(/l (h,—h,)— 1 )+ D ( h,—hy)— 1 )

where My, = B.M. on section 1-1 due to external loads only
V. = shear at section 1-1,
My = B.M. on szction 2-2 due to external loads ouly
Vg = shear at section 2-2
h, and b, = heights of girder at sections 1-1 and 2-2
respectively
h, and b, = heights of girder at ends of panel.

These moments are due to the force system shown in Fig. 9a,
and are thus the new primary moments in the modificd panel

method.
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The force systems shown in Figs. 9b and 9¢ can be treated
in a similar way.  The forces and couples acting at the mid-points
of the adjacent panels are shifted to the corners of the panel abed,
introducing additional couples. The corresponding force systems
are shown in Figs. 10b and 10c respectively. They give directly
the following secondary moments :

Mo, = M, — + %. gl_ M,

f

M;, = M, - T a +ﬂ2h} M,

D b,
r 24 ar l h
v My = 8 g'“)fl—jmz
e e S 1 )2 h
KoMy 2O by

As already mentioned, these secondary moments are very
small compared with the primary moments, They can even be
neglected. In other words, the primary moments obtained by
the proposed modification give, toa good degree of approximation,
the bending moment diagrams of the Vierendeel girder. There
is bardly any need of further correction.

[ order to prove this statement, the same numerical example
worked out before is solved hereafter by the “ Modified Panel
Method ™.
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Numerical example (Fig. 11) :

/’N'ma::/M ..908 -l.soc{.,.uz O] 4. 352 gbifl e bl2 o 342

Correclions Ae06 ok
v 022 .00 +.048 054
Result M. |-.881  13|4.448  w025|,.388 4387 .sr2 2]

@

a

d
/p. 1hn p

1 c

Fig. 11

The primary moments M’ are:

. v — —O 75x5 K2 .
M, =M, = 35505 (307510875 (2+40751))
. 312 .
95% 5
_ Y25x5 ) — —0-909
4
. ~075% 5
M =M, = —27X9 g 1.184—0375 .
w = Moe = 555305 (841-184—0375) +0-0533
(—0°1864) = —1-308
WM - — 0149 (18754 0-5x0-75x5)+0-25xsx
b Tbre 9K 7484
(84217 — 0149 (2 4+ 2:17)] — 0:1022 X
1875 . o 075X 5
(E;;(*m (875-—4875) — " )
1-875
—02 —_— (3+19.—-3
0-2466 (2><3'47 (3'19-—347)
25X 5 '
0 ZX ) — 40432
M, =M, = 0047 (3+0-764—0:149)+ 00869 (—1-154)
4021 (—0-389) = —0012
M =M = 0176 (3125—0:5X0-25X5) +u~25><5x
o'd 2% 10-346

[8407644-0'176 (240764)] — 0-210 X
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3125 (3:19—347) , 0:25X3\
( oxadr T 4 )“0 0869°X
0-625(375—4'875) 025X )
2% 4875 -4

M;e '_;M;,e, == 40082 (342174 0176) 4 0-2466 (0°187)
401022 (—0-389) = 40441
_. 06 (1'875—03X 025X 5) +0

M M ) .
de~ e 2% 14102 X

3+1 184406 (241" 12.4)] — 00533 X
1-875 (375—347) 025X5\ |
( oxs4r T4 -)~»+10'$12

M ::M 071 (3+4075140°6) 40 0853 (0-389)
= +0-342

'

The respective corrections are :

. 375 [ —1-308+0-909
M7= —01022 X ( )

4875 2 ‘
= —0-1022 (—0153) = 40016
M7 = 400869 (—0153) . = —0013
|
- 374 (.0448 4 00
M = —00533 X 202 ( 8t
== —00533 (40256) S —0°014
M” = 400869 (+0256) = 40022
” $19 [ —0-025—0-448
M~ —0210
od 9 X 347 2 ) ,
= —0210 (—0-217) = 40046
M = 402466 (—0217) — —0-054
de 4 2 . —
M, = ' N ~ 0000

The whole process is shown in Fig. 11.
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 accurate results are obtained after one single correction.
Eveu .iis correction is not absolutely necessary. ln the ordinary
panel method, it is reminded, four successive corrections were
neewe 1o arvive at the final results. This justifies the proposed
moditication.

0. —TaE VIERENDEEL GIRDER WITH CONSTANT

Srrersess Rario

The method of * Elastic Couples” as well as the * Panel
Method ” have been established for the special type of a Vieren-
deel girder with equal chord stiffness, subject to panel point
loading. The general case of variable chord stiffuess and direct
loading is obviously more difficult. '

In the following, a trial is made to use the punel method
for the approximate solution of a Vierendeel girder with copstant
stiffness ratio. The two chords have different stiffness, yer a
constant ratio between the upper and lower chord stiftness is here
maintained.

The idea involved is to replace the system by a Vierendeel
cirder with cqual chord stiffness of a value equal to the mathema-
tical average of the real two values of chord stiffri-:s. The
results obtained by the panel method show that up o about 30°/,
difference in the upper and lower chord stiffness, there will be
fair approximations of the real values.

Table 1 gives the accurate end moments for panel point
loading when the upper chord stiffness is increased 30°[o, while
keeping the stiffness of the lower chord and vertical members
unchanged. The end moments calculated for an average constaut
stiftness of 1-15 are shown in Table 2.

A study of the results shows that, by increasing the stiffness
of the upper chord, bigger end moments are produced in these
members.  The moments obtained by assuming a constant



average stiffness lie between the corresponding values of upper
and lower chords.

Table 3 shows the percentage error in the maximum ordi-.
nates, if the values of Table 2 are used as approximations for
those in Table 1. It contains also the percentage error, if the
load covers the whole span, /.e. in the area of the influence lines.

TABLE 1 ' TABLE 2
 Unitladat | 0 Unitladat
Momente - PR L Moments i e e

8 . 5 . 3 ;3 5 3

M3 |—0°894 ;-—0'673 —0°347 M= —M,, —0°869 |—0°658 |—0-340

|
|

L I i- - - R i
|

My, 1~437[ 0°867| 0°424 M= —M,, | 1-332} 0°839| 0°413
My | 0553 |—0°531 |—-0301 Mgs= —Myq { 0°467 |—0°525 |—0-384
M;; | 0'065j 1:094 07409 Mgy —Mg, 0°052| 0°990{ 0-392
Mu 0 . 842 £ 0 .643 0 . 332 Srrommomemom t':::.‘:.—.::;’—":t::,,.,:—:t—" b

—1°228|—0°810 |—0-401

My |—0°383| 0°516] 0375

Mg, |—0°042)|—0°892 |—0°378
TABLE 3
o Xr_ea of LL. % Max. ordinate | %
,‘Moments e | [
4 Exact | Approx. ; ©fTor Exact | Approx. | T
| Mg |—9°570|-—9°330| 2'5 {—0°894|{—0°869| 2-88

My, 13°640] 12°920| 5°57 1-437 1-332| 7-88
Mg | —1°845|—2-210| 16°52 0°553| 0°467| 18-41
7°845{ 7-205| 8°8 1094 07990 10°61

o=
8

It is clear that errors become less if the load covers a longer
part of the span.

With a smaller difference in the chord stiffness than 30°[,
the proposed method gives better approximations. The error
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involved in the maximum ordinate with a difference of 20°/, for
" example is 5°65°], only, and with 10°/, difference, the same error
is further reduced to 2-87°,.

A study of the results shows, further, that the proposed
" approximate moments lie between the real values of the upper
and lower chords. Consequently, the sum of the real and
approximate moments respectively will be almost the same.
* This means that the normal forces produced by assuming a
constant average stiffness will be almost identical with those
found in the case of unequal chord stiffness.

Remembering now, that the maximum stresses are affected
by the axial forces as well as by the bending moments, it becomes-
evident that ths maximum stresses, calculated by the proposed
method of constant average stiffness, will show a better degree
of approximation than that for the bending moment alone.

Further, the big errors indicated in Table 3 refer to the
absolute maximum differences in ordinates and areas of influence
lines for the end moments. These values, however; are not
always governing. The percentage error is less in the case of
the bigger moments which control the design.

In short, the proposed method of assuming an average chord
stiffness gives, with differences of 10 and 20°/, in the chord
stiffness, good results. Taking all factors into consideration, this
method is also useful as a practical approximation up to an
appreciable- difference of 30 and even 30°/, in the chord
stiffness.





