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InTrODUCTION

This paper deals with the determination of input transient
and steady current responses due to the application of a pure
sine wave voltage on electric lines. The solution is based on the
use of Laplace transformations. Three cases are considered.

The first part deals with a smooth lossless line of distributed
constants of inductive and capacitive reactances (L-Cline). The
second part is a smooth transmission line with distributed
constants, resistances and copacities. The third part deals with
a line composed of lumped resistances and capacities (R-C circuit).
The solutions of the cases given here are systematic and clear
and give accurate responses with no approximation. 1t is felt
that the solutions presented are new since no record has been
found of previous solutions using the Laplace transform.

GENERAL EXPLANATION 0F THE METHODS USED

In solving the differential equations of electrical circuits, it
is possible to express the quantities involved in terms of a
secondary variable. In terms of this secondary variable, the
problem can be solved algebraically. Then by transforming back
to the original independent variable, the solution to the original
differential equation is obtained. The transformation which
makes these operations possible is called the Laplace transforma-
tion.



The Laplace transformations transform f (t), a function of t
into F (s), a function of some new variable s, according to the
equation.
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Therefére, F (s) = ol

Thus, the Laplace transformation

allows e* to be expressed as a_—]FE . The quantities e** and

%; are, theréfore, called Laplace transforms. Specifically

is called the Laplace transform of e ™, while e ™ is called
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the inverse transform of

Equation (1) is called the direct Laplace transformation.
The physical significance of ¢ in equation (1) is determined by
the problem at band, which will be time in the cases under
consideration. On the other hand, the physical significance of a
is just the significance which we find for it because of its relation
to ¢ in equation (1).

As we shall use it, ¢ is restricted to real values, but s will
~ be allowed to take on complex values. However, the real part
of s will be required to be large enough to make the integral in
equation (1) absolutely convergent. In accordance with the
foregoing, it will be convenient frequently to refer to ¢ as the




real variable and s as the complex variable in the Laplace trans-
formation.

A fundamental formula which is used in the solution of one
of the cases is expressed by the following theorems. If
-
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then e F (5) = f fv (t-b)et dt

provided that & is a positive constant.

The direct Laplace transformation and the preceding theorem
are used in solving the case of a smooth line of inductive and
capacitive reactances.

The inversion thaorem for the laplace transformation is an
integral formula by which £ (t) may by obtained from F (s).
The general statement of the inversion theorem is as follows:
If F (s) is defined by the Laplace transformation.
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' Equation (4) can be expressed also as

f(t) = 2—11-;] f F (s) e* ds . . . (5)

Equation (1) and (4) and their equivalent equations (1) and
(5) are called inversion theorems. Therefore, f (t) is the sum of
the residues of the function F (s) e* with respect to all its
singular points.

Equation (3) itself is at explicit formula for calculating the
inverse of the Laplace transformation, and it is, therefore, called



the inverse transformation. It can be used for finding f (t)
from F (s) when the given form of F (s) cannot be treated with
the aid of available tables of transforms. In fact, pairs of the
Laplace transforms, f (t) and F (s), to be used for compiling a
table, can be obtained from the inverse transformation (3) just
as readily as from the direct Laplace transformation.

PART I
Smoorn LossLess LINE

The line consists of distributed constants of inductive and
capacitive reactanees. The resistance and leakage conductances
are considered to be equal to zero. An applied e.m.f. of a pure
sine wave form is applied through an internal impedance equal
to the characteristic impedance of the line. The length of the
line is a finite value and the line is short circuited at the
receiving end.

Different methods and ways of solutions were thoroughly
tnd carefully investigated. These investigations led to the use
of the wave equation.

This wave equation gives the most favorable solution.
The general wave equation 1s
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where I (s), E (s), Zs (s) and Z¢ (s) are the Leplace transformations,
for the circuit at a distauce X from the sending end of the
current, the applied sine wave valtage, the internal impedance
of the source and the characteristic impedance of the smooth line,
where & (s) is the propagation constant of the line expressed in
the Laplace transformation.  Therefore, in this case & (s) = s/CL.
internal impedance of the source and the characteristic impedance
of the smooth line, where A (s) is the propagation constant of
the line expressed in the Laplace transformation. Therefore, in

this case Y (s) = ¢LC.
L = inductive reactance per unit length of the line,
C = capacitive reactance per unit length of the line

L and C are conatant values.

_1—a, _l—a,  _ Z.(s) _ L)
b 14, and by = THa, " Ze®) and ;= Z, (s)

where Z, {s) is equal to the receiving end impedance
expressed in the Laplace transformation form.

The first term in equation (2) represents the current wave
in a very long reflectionless line, the second term represents a
wave which has travelled to the receiver at X==d (in the finite
line considered) and is reflected back to X, the third represents
a wave which has travelled to X=d, back to X=0, and thence
to X, and so on.

ln the case under consideration, where the line is considered
to be short circuited at the receiving end, the equation is written
as follows:

I(s)=§z ((ss))e"ﬂ (%) 4 e~ A(2d + %) (3)

The result of this equation is
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The equation (4) represents the current as a function of
the time at any point a distance X from the sending end on the
line. This solution is based on the application of the direct
Laplace transformation, taken from the tables, with the use of
the theorem mentioned before in Part 1. To get the input current,
x is set equal to zero. Therefore, the input current as a function
of the time is equal to

1, (t) =37\/_gsin ®t - 37¢€ sin © (t—2d ‘/E) (5)

where \/ ;: is equal to the characteristic impedance of the

line. The term w /LC is the propagation constant of the line.

The sigaifeunce of the two terms which make up equation
(5) is as follows. From time equal to zero to the time when the
wave returns to the sending end, the first term of the equation

is used. This term 1is 1—\/gsin ® t.
2L

The time for a round trip is equal to twice the length of
the line d divided by the velocity of propagation of the line.

Time = _2.;§ = 2d JL.C

After the time becomes equal to ( 2d y LC), the two terms
of equation (5) are considered.

To get the input current for an infinite line, we consider
equation (2)
E(s) M
Zc (s) ©

Therefore, the equation of the current at any point X for an
infinite lossless line is equal to

Iy (s) =

I(t) = -;—- \/ (—i-sin @ (t —/LCx).

Also the input current as a function of time for an infinite
lossless line can be written as




Iy (c)=-§-\/%—sin ® t.

PART II
As R-C Smuoora Line

The line consists of distributed constants of resistances and
capacitances. The inductances and the leakage conductances are
considered to be equal to zero. An em.f. of a pure sine wave
form is used. The line is of a fivite length and short circuited
at the receiving end. Therefore,

Ry = sin ot

R = resistance per unit length of the line.

C = capacitive reactance per unit length of the line.
d = the length of the line.

The total current expressed in the Laplace transformation is

as follows:
/
®s "C cosh d yRCs
Io (8) = @? + s2 Y/ Rs sinh d JRCs . ' )

Z, (8) = J-&, and A (8) = \/RCB.

To solve equation (1), two theorems are considered. One
is the inversion theorem of the Laplace transformation. Theother
is the Borel’s theorem.
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By using Borel's theorem, the input current as a function
of time can be expressed as :

' m=r1 ® 2 KT
Ip (t) = fcos o (t—T) [—+Z e ]dT
o 0 me=1 dR m=1dR
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Solving the above equation gives rhe total input current.
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where tan ¢ — P

From the total solution of equation (2), two states exist
the transient state:
m=® __ e—Kt -
2 iR sin 2 ¢
me==1]

and the steady state terms:

1 ® 2
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As a tentative check on equation (2) it is noted that 14 (t)
reduces to zero when t=0. Also, when ¢ approaches infinity,
I, (t) reduces to the steady state portion only of equation (2).

PART III
Tue Lumpep (R-C) Lise

The line consists of lumped resistances and capacitive react-
ances (R-C). An em.f. of pure sinusoidal shape is applied.
The length of the line is a finite value and the line is short




circuited at the receiving »v<  iue general equation for the
current expressed in the Laplace transformation is as follows :

) E (s) sinh 6 cosh (m-r) 6 + %:—((—SST)sinh (m-r) o
1, (s) = 1
( Z (s) sinh 6 (sinh m6 sinh 6 4 ZZH((SS)) cosh me) W

where Z (s), Z” (s), Z’(s) are impedances expressed in the Laplace
transformation.

In the case under consideration, the input current expressed
in the Laplace transformation can be written as :

I(s) — E, (s) sinh 6 cosh m8 ® Cs cosh mé
(s) = Z (s) sinh @ sinh m@ sinh® ~  (s? 4+ w?) sinh mO sinh O
Therefore,
1 @Cs cosh mo e
L (t) = . . (2)

anj J s+ »?) sinh m6 sinh

Equation (2) can be solved by the inversion theorem and
calculus of residues. The solution of this equation gives two
responses. One is the steady state response and the other is the
transient response.

The transient response is given by the following :
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The above response is due to the poles of the function
sinh 8 sinh me.
The steady state response is given by,
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where
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The above steady state term is due to the poles of the function
(s*+w?). Therefore, the total input carrent for the m sections
.and short circuited at the receiving end is.

_4t, m—}
L ()= —40C RC _ 20 =« —at
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c .
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