GRAPHICAL SOLUTION OF THE
TORSION PROBLEM

BY

M. I. I. RASHED,
B. Eng., Dr. Sc. tech.

The following is a trial to solve the torsion problem graphi-
cally. We begin with the fundamental strain equations, proceed
to the assumptions of Saint Venant for the twisting of a prism,
reform the corresponding equations until we reach a differential
equation which can be solved graphically. The boundary condi-
tions are introduced through a supplementary equation which is
of the integral type.

STRESS AND STRAIN IN A TwisTED PRIsM
(a) General strain conditions in a body:

We assume a body which is to deform under the action of
external forces. Any body point is to have displacement com-
ponents in the axis-directions, i.e. the point which initially has the
cordinates (x, y, z) will have after the action of external forces the
coordinates given by (x+u,y + v, z 4 w), where u, v and w rep-
resent the displacement components. They are functions of the
coordinates x, y and z and they possess the following derivatives
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These represent the rate of change of displacement com-
ponents with respect to the three independant variables x, y and z.
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Assuming now another point near the point (x, y, z) having

the coordinates (x-+¢&, y+n, z+8), then this new point will be
displaced to a new point having the coordinates given by

o o o
X + u +-§.5% +—n.a% +—§.§%
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z + w + E-g-i—n-é—y‘ﬁ-f-g

In figure 1 is represented the displacement of a small cube.
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To clarify the deformation due to the displacement in the
three dimensional case we give in figure 2 the case of two
dimensional displacement. In this case we have a small rectan-
gular element a’ bed with the sides parallel to the x- and y- axis.

Fig. 2~

After displacement the rectangular element will take the form
of a parallelogram a'b'¢d’. The deformation of the rectangular
element can be dividé‘d into:

(1) Elongatmon in the x and y directions. The correspond-

ing strains in these directions are given byaulax and aV/ay I
these strains occur alone, the rectangle w1ll t;ake the rectangular
form a'bscyd;.

" (2) Shear strain. The angle between the sides a band « d

. - dv Jdu .

is decreased by the value (5—}2 + é_;) which represents the
shear strain. If this deformation is added to the deformation
mentioned in 1 we get the parallelogram a' by ¢; ds.

(3) Still we have to rotate the parallelogram by an angle
¢y a’ ¢ to reach the final form o b’ ¢ d'. - This angle of rotation

) ov Jdu
is equal to % 5y T a—y .



Generalising now iur a wnree dimensional case we get linear
strains, shear strain components as well as rotational components,
There are given by :

1. Lirear strain components
Ju ov ow

e":é_;’eyy:a_‘; ’eu::az

2. The shear strain components

In the x-y plane ey == g—;(— + g;
In the z-y plane e = g—‘; + %;1
Jdu ow

In the z-a glane en = 5 + s

3. The rotar’ nal components

. ov Jdu
In the x-y plane 2 @, = Gy ‘W
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. 9 A A

In the y-z plane T 5
du ow

In the z-x plane 2w, = 55 Ox

(b) Stress conditions in a body:

We assume a small cube haviug the surfaces parallel to the
planes y-z, z-x and x-y. Such a cube is shown in figure 3. Un
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a z- plane (a plane parallel to the x-y-plane), we have the
components of the stress parallel to the x-, y- and z -axis given
bv X,, Y, and Z, The positive direction of the normal
compomeut is the tension direction or the outwards directed
normal. If this direction coincides with the positive direction
of one of the axes then we shall consider the positive directions
of the other components parallel to the positive directions of the
other axes. And if the positive direction of the normal
component coincides with the negative direction of one of the
axes, then the positive directions of the other components coincide
with the negative directions of the other axes. It is easy to
prove that :

X, =Y, , Y.,=Z ad Z =X,

And if there is no body fowces then for equilibrium we have

o X, 0X, X,
ox + dy + oz T 0
oY, oY, oY,
ox T dy + & = 0
9Z, 9 Z, 9%, _

x T oy T &
(c) Relation between strain and stress conditions :

According to Hooke’s law we have a linear relation between
the strain and the stress. Hence we can apply the law of super-
position. Thus we have the following relations valid
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where we have
E = Young's modulus of elasticity
p = Poisson’s ratio, the ration of the lateral
contraction to the longitudinal extension.
G = The modulus of Rigidity.

(d) Prism;subjected to torsion :
Theory of Saint Venant.

If we assume the cross-section of the prism to be circular,
then according to the assumptions mentioned in elementary text
hooks on theory of elasticity, we consider any normal cross-sectiou
to be turned relatively to any other cross-section through an
angle proportional to the distance between the two planes. The
‘shearing stress at any point is proportional to the distance of the
point from the axis. The moment of the total shearing forces is
equal to the twisting moment.

If the cross-section is not circular this assumption is not
sufficient. We assume according to the theory of Saint Venant
tnat the shear strain consists of two parts:

(a) A relative sliding in the traverse direction of elements of
different cross-sections. This is the only type of strain occurring
in a circular section.

Fig. 4




(b) A relative sliding paraliel to che length of the prism of
different longitudinal linear elements. Due to this shear strain
the plane cross-section becomes distorted into curved surface.

Taking the generating line of the surface of the prism parallel
to the z-axis, we have for the displacement according to the shear
strain mentioned under (a) the following relation :

u=—20.2y and Vv =20 zX

And we have for the displacement according to the shear
strain mentioned under (b) the following relation :

w=26.9¢(x,y)
where ’

u, v and w represent the displacement components in the
x, v and z directions.

8 = The twist per unit length.

Working the consequences of these assumptions we get for
the strain components the following relations :

(1) Linear strains
€ = €y, == €, = 0

(2) Shear strains
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(3) We still have for the rotational components
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According to the relations between the strain and stress
mentioned on page 371, we get the following stress components
that do not vanish :

r; a¢
Z, = Y. — G. e, G.e.(a—y—}—x)

Je¢
ZX=XI ='G-e,,==G.6.(a—£—y)

Writing the values of Z, and Z, in the equilibrium relation

oz,  aZ, |, 9L,
ox Toy T &

= 0

already mentioned on page 371. we get

oz, | 8L, , 9%, _ _ _
x Ty tTa=°~
7] ¢ rZ) d¢
= 3% (G.G. (332 ——y)) +ay(G.9. (5—};—}- x))+ o
e | ¢ ‘ |
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And this equation holds for all points of the cross-section.
The function ¢ is so chosen as to satisfy this relation as well as
the boundary conditions. With respect to the boundary condi-
tions it is to be mentioned that the stress at any point on the
boundary of the cross-section must be tangent to the boundary.
Mathematically speaking these conditions are sufficient to define
the function ¢. :

e) Lines of shearing stress or shear lines:
We have just seen that there exists a function ¢ such that
oo
oy?
According to the rules of the theory of functions (Differen-
tial and integral calculus of complex variables), there exists
another function ¢ such that
o 9y _
ox Oy dy Jdx

. o . .
the equation P -+ — o is satisfied.



where
(¢ +ip)=F(x+1iy)
We can also see that q: satisfies the relation
82¢
ax T 3}

Introducing ¢ in the shear strain equations we get

°¢ — oy
3,,_—.9. (a——y +x)_.6 (—5—X+X)

=0

_ oy 6(f+F@D)
_ 0 o [O¥
enme (53 —v) =2 (7 —)
o (0¥ 8(y+F(X)))
=6 | 5=
(y t oy
Writing
F (x) =x*and F (y) = y?
we get
a 2 2
om0l (s t)
= 055 (¥—3 @4
= Jy ] y
Hence we get for the shear strees components
_ 2 2
z, = — .o 2 3@+y»
X
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Writing
vy =W

Then the equations for the shear stress components can be
written as follows:

Q

q,l
X

Z, = — G.e.
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Y’ is so chosen that the shear stress or the shear strain at any
point on the boundary is always tangent to the boundary. To
discuss this let us calculate the shear stress components in any
direction. Let x’ be another direction making an angle a with
the x-direction as shown in figure 5. In this direction the shear

-

Fig. 5

"’ e DR T Cm e e
stress component is given by
7 = Z,. cos « + Z,. sin a
x .

=G.9(?;; cosa — :9% sin a)

According to the calculus rules we have :

oy ., ow .
5y — éi,.Sy + 55 8x
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dx T 9y dx 9x’ " ox

Thus we get ‘
_ dy 9y’ dy 9%’
Zx,——G.e(g?.E;+é—{{,. 'a—y“)oOOSG
oy dy . 9¢ x| .
—G. 6 (Ty,.a—i%—.a?._a';).snla
But we have the following relations between x,yandx,y.
X' = X.cos a -+ y.sina

Yy =y.cos a — x.sin «
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The partial derivatives of x’ and y’ with respect to x and y
are given by

ox ox" .
7 —cosa 3y = sin «
a——'l = co oy = — sin «
ay“"“‘ 9 x

Introducing these in the above relation to get the value of
Z, we get

g o oy oy
L,,__G.e{(a—&—,.cosa-{—ﬁ.sma)cosa
-—(-—g—‘;.sina—}-gi"..cosa)sina}
-1
or Z,,._G.e-—é—?

This means that the shear stress component in a certain
direction is equal to (G. 8) multiplied by the partial derivative
of ¢ in a direction leading this direction by 90°.

-

It is clear that to have the shear stress at a point on the
boundary parallel to the boundary means that the shear
component normal to the boundary equals zero. Hence the
partial derivative of ¢ in the boundary direction at any
point on the boundary must vanish. In other words ¢’ takes
a certain constant on the bogndary. Let this constant value
be zero.

We can now join all points of the cross-section at which ¢’
takes a certain constant value. The resulting closed curve
(or curves) represents a certain contour line,

According to the above reasoning the direction of the shear
stress at any point is always tangent to the contour line at
this point.



Let these contour lines be called shear lines or lines of
shearing stress. The orii:igonal lines we shall call the normal
lines.

vy
o
¥% coneh
tines
X,h
normal lines
Fig. 6

Hence the shear stress at any point is equal to ((.8)
multiplied by the partial derivative of ¢ in the orthogonal line
direction or in the normal line direction.

(t) Calculation of the twisting moment :
In figure 7 the element given by &x. 8y is subject to the
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Fig. 7

shear stress components Zx and Zy. The moment of the shearing
forces on this element about the z-axis is given by

8 M,——Z,.8x.5y.y + Z;. 8 x. 8y. x
oy’
_G.e(—gy.y.Bx. By
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Integrating we get '

M,:—G.e(jfy,%’;.dx.dy
+ffx.g-g.dx.dy)

where the double integrals extend all over the cross-section.

" With the aid of figure 7 let us try to get the value of the first
integral. In figure 7 the coordinate system is a (x,y,¥')-system.
The x and y axes lie in the cross-sectional plane, the ' axis
is perpendicular to both ¢’ is a function of x and y and can be
thus represented by a curved surface. This curved surface meets
the x-y plane along the outer contour of the cross-section since
along this contour we have taken y' = zero.

In a plane parallel to both the ' and y axes (. e it is a
x==constant plane) we have

A

oy

Multiplying by y and integrating we get

oy f .
. dy = . dy
f}’ Jy y y

The value of this integral is represented by the hatcbed
area A shown in figure 7b.

ydy =d ¢

Integrating this area with respect to x we get that our double
integral

ff}’-g—‘;’i-dy. dx = f(fy.d(p’)dx :fA.dx

represents the volume enclosed between the cross-section and the
curved surface representing the relation between y' and x and y.

The second integral can also be proved to have exactly the
same value as the first integral.

Thue the twisting moment is numerically equal to G.8
multiplied by twice the volume above mentioned. 1. e. we have



M,=-—-26G.6V
— M
9G.V

where V represents the volume enclosed between the cross-section
and the surface representing the relation between ¢’ and x and y.

8 —

(g) Graphical solution :

- Assume Y’ to represent a certain displacement function
such that
oy du — oy

u = gy and vy =g
where u, = and u, represent the displacement components in
theXand y directions. In any other direction x' the displacement
component can be proved (*) to be given by

oy

Displacement component u, =3y

where y’ represents the direction leading the x'-direction by 90°.
Thus along a normal line there is no displacement whatsoever.

The only displacement that exists is in the direction of the
shear lines or lines of shearing stress (y'==constant ).

Of the characteristic invariants of the function ¢’ is the rota-
tional component in the z -direction. . By the rotational vactor
component in the z -direction we mean

. ov, ou,
2. Rotational vector component == = — =
ox oy

oy’ \
oy
where x and y- axes are any two perpendicular to each other axes.

(*) The proof follows the same lines mentioned on pages 376, 377.
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We have but

=9 —1(x+y?)
thus we get

0 0
2. Rotational vector component — e ( —_ —(%:— + x ) —
¢ (20
dy \ oy
oy oy
‘ (?9? 8y2) + 2
Referring to page 375. we have
oy %y _
oxt T oy T
Hence
Rotational vector component = 1

Referring to the meaning of the rotational vector on
page 370, we see that-it is represented by half the summation of
the angles of rotation of two small segments orlgmally perpen-
dicular to each other.

Taking two small segments PA and PB as shown in
figure 8 where

shear lines

" normal lu'.ne': '
- Flg 8 '
———P s 4’ pomt on a shear line and ‘a normal lme
- PAis a segment or a small stmlght litie on rhe shem line.

—~PB'is a s@gment 5t 4’ sl strawht lme on che noxmal
line. .
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At the point P we have
p = The radius of curvature of the shear line.

n — The length of the normal line from a starting point
on it to the point P.

n — The length of the segment PB.

The displacement of the point P is given by D and is equal
to the length of the segment of the shear line from P to P".

Then the displacement of the point B to the point B’ is
thus given by

oD
D +aT. 5n

From the geometry of figure 8 we have
—The rotation of the segment PA to P’'A’ is through an
angle equal to D/p.

—The rotation of the segment PB to P’B’ is through an
angle given by )

Q—Q on
dn ~~ _dD
Sn = On
Hence
9. Rotational vector —= 6_]2 + _]2
dn p

Equating this with the value of the rotational vector, we
get the following differential equation
ob D __
dn ' p
This is the differential cquation which represents the funda-
mental equation which we shsil try to solve graphically. if fora
certain cross-section the shapes of the shear lines are known, then
the radius of curvature at any point is known and consequently
the differential equation can be solved. The solution is found
graphically by the method of trial and error, thus getting the
value of D at any point

2



However if =0 and p—v : .. .d detailed discussion to
get the value of Dfp. This is the case when the shear line ¢’ —=
constant is one single point. Very near to this point the traction
lines are represented by ellipses. For one of these ellipses
assume the lengths of the major and minor axes to be equal to a
and b. On this ellipse for the end points on the major axis the
radius of curvature is equal to b*a and for the end points on the
minor axis the radius of curvature is equal to a2/b.

From the calculus rules we have
D 4D
p— dp
when both D and p tend to zero.

For the point on the major axis we have

dn—a
b2
Bp:‘a

Hence it follows

D_9éD __9dD én oD 5n

p == 06p — On' dpg — oJn  &p
oD a?

= On" 2

Introducing the value of Djp in the fundamental equation
we get

oD D 6D oD a?
ot @ Ta T
r °ob_ 2
° on (1 + ayb?)
In a similar way for the point on the rinor axis it can be
proved that

6b 2

on (1 + bYfa?)

With these equations it is possible to get the value of
0dD|0n at the point where both D and p take the zero value.
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This point which we shall eall the neutral point represents
the starting point of the integration of the fundamental differen-
tial equation.

6 D

D LD
The integration follows a normal line.

{h) Supplementary equation :

We add to the above fundamental differential equation a
supplementary equation having the integral type to add in the
solution of our problem. This supplementary equation is now
discussed.

In a two dimensional plane, if U and V are finite functions
in x and y, single valued and differentiable at all points of a
simply connected region which is completely bounded by a closed
curve 8, then GREEN’s theorm states the following

f(l.[ + m. V)ds ff(ay 4 %:’)dx.dy

where | and m represent the direction cosines of the inward
directed norma! to the curve S. The first integral is the line
integral along the curve S in the anticlockwise direction, while
the second integral extends all over the bounded region.

Remembering that the stress components Z, and Z, satisfy
the above conditions for U and V, we can thus introduce
Z.,=U  and Z, =V

in the above equation. Hence

., OZx
j(l.éx+m£)ds—ff(dx+a>)dxdy

Referring to the equilibrium equation mentionedon page 371
and namely '

oz, az, 9L,
T ort oz =0

. dx. < Ox
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and knowing that Z, — zero, we see that the right-hand integral
vanishes, thus simplifying the equation to

j[( L Zy 4+ m. Zy > ds == o

(L Ze 4 m. Zy) is nothing but the shear stress component
in the direction haviny 1 nad m its direction cosines. Denoting
this shear stress component by Z, we can thus write

on. ds=o

Further consider the region enclosed by two normal lines and
the boundary of the cross-section us shown in figure 9. The con-

A .
Z,30 normael line
Z .eds
(4
Fig. 9

tour of this region consists of the normal line KA, the part of the
cross-section boundary AB and the normal line BK. The point
K represents the neutral point, i.e. the point where the shear
stress vanishes.

Along the part of contour AB we have ¢’ = constant which
means that the shear stress component normal to it is zero.

Along the normal lines KA and BK we have the normal
stress component given by (G. 8) multiplied by the partial
derivative of ¢’ in the direction leading the stress component
direction by 90°. For the normal line KA we thus get that the
shear stress component in the direction of the inward directed
normal is given by



.
Z, = — G.¢. %

on

For the normal line BK the shear stress component in the
direction of the inward directed normal is given by

P
Z= 605"

where n represents the length of the corresponding normal ljne
neasured from a certain starting point whicly i taken in our c. <e
to be the neutra] point K.

Introducing these in the line integral mentioned o the lasr,

page, we get
. A aq,' B
Kf-G.O.éH-.dsﬁ—Afo.ds
K oy _
+BfG-e.5;]~.dS-—0

From K to A we have ds — (p and from B to K we have
ds = — dn, thys getting

A . K v
— G. 6.%.d11-- G. e.aﬂ.dn:::o
K ) on B on
Referring to the definition of the displacement (*) due to the

displacement function ¥ we get that the value of ;% at anv

‘point is the displacement D,

Introducing D in the above equation we get

A K
G.G.fD.dn—l—G.e.fD.dn:-:.p
K B
A K
f D.dn = — f D. dn
K B
B
= f D. dn
K, :

(*) The displacement s any direction equals the partial derivative of Y in a direc.
tion leading the displacement direction by 90°. The absolute value of the displacement
at any point equals the partial derivative of ' jn the normal line direction.



Since the choice of the normal lines K A and K B was
quite arbitrary, we conclude that

f D. dn = constant

where the line integral extends from the neutral point K along
any normal line to the boundary of the cross-section.

This integral equation together with the fundamental
equation

oD, D_y
on p
solve the problem completely.

(i) Check equation:

In connection with the above-mentioned GREEN’s theorm
taking

U=—2, and V=12,

we get

f(—LL+leds

[ R

As before the integral o the right-hand side extends all over
a simply connected region and the integral on the left-hand side is
the line integralin the anticlockwise direction along the boundary
of the simply connected region. Refering to the values of Z,
and Z, (page 375), introducing them in the above relation, i.e.

; oy L, OV
/Jx:G.Q.—é-y“ and Zy:——(r.e.—&’
wa get
oy’

oy’
+ m. G. 6. '—a’;) ds
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oy oy’
= . 6. ff(a—;pi—}-é—gi)dx.dy

But ¢ o= — 3 (x2 4 y?)
oy oy

where 5;;2 ~|— é? - o0
P S

hence Sxt + oy = — 2

Finally we get
S(—=1Z,+mZ)d =—2G0 A

where A represents the area of the simply connected bounded
region.

We proceed now to discues the meaning of (—1. Z; + m. Z,).
l and m represent the direction cosines of the inwards normal to
the boundary line of the simply connected region. This means
that the direction cosines of the tangent to the curve or to ds are
equal to m and—I1. Referring to the ralation on page 376 Letween
the stress components in any direction x’ and the stress com-
ponents in the x-and y -directions (i.e. Z, and Z) whichis given by

Z, =17, cosa-+ Zy sin «

where (cos «) and (sin «) represent the direction cosines of the
direction x’. Hence it follows

(=L Z 4+ m L) =7,

where Z, represents the stress component in the S-direction. The
stress component at any point in any direction is equal to (G.8)
multiplied by the displacement component in that direction due
to the displacement function ¢'. Denoting this displacement
component by D, we get

‘.’- 'f’(—-—l.Zy—{-m.Z,)'_:—~2G.9A

st.dsi [G.G. D, ds = -—~2G.8. A
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f D, ds == —2A

And this represtnts the check equation which will be used
to check the results obtained from the fundamental equation
together with the supplementary equation.

As a particular case we take the simply connected region to
be the whole cross-section under discussion. If A, denotes the
area of the cross-section, D represents the displacement at a
point on the boundary which is the absolute value of the displa-
cement, then

be.dS:—

(j) Summary of the results:

@' represents a certain displacement which satisfies the
partial differential equation.
o'y | Py
ox? + dy?
In the cross-section the curves representing (y'==const.)
are called shear lines or lines of shearing stress. The ortho-
gonals to these lines are called the normal lines. The point
wheve all the normal lines meet (¢ is a maximum or a minimum)
is called the neutral point K.

= 2

Due to the displacement function ¢ the displacement at
any point in any direction is given by the partial derivative of "
in a direction lending the component direction by 90°  The
displacement in the direction s is called D .

Along any normal line the displacement D satisfies the
difterential equation.

ob , D
Y -9
on }—p -

where n denotes the length of the normal line from the neutral
point K, p equals the radius of curvature of the shear lines at
the intersection with the normal line.



For theinteoral wav baginnine frew the neutral point K and
- . - ,

ending on the boundary of the eros:-s=czion following any normal
line, the following integral cquatisn must he satisfied.

Boundary

fD. dn = Constant
N

For the whole cross-section contour the line integral

—be.ds:sz.

supplies another relation. A= cross sectional area.

The stress at any point is given by (G.6.D) where D denotes
the displacement at that point, G equals the modulus of rigidity
and @ the angle of twist per unit prism length,

The twisting moment is given by (-2G.8.V) where V eqnals
the volume enclosed between the (x-y) plane and the surface
representing the relation ¢’ = F (x, y) in a (%, y, y")—space.

Pruactical steps of the solution:

(a) Assume a likely pattern of the shear lines and to the
shear lines draw the corresponding normal lines. In many
practical cases the shapes of the shear lines can be assumed with
a reasonable degree of accuracy. Some approximate forms ot
these lines for various cross-sectionsare shown in figures 10 to 17.

(b) Choose a normal line I, use the fundamental differentia’

equation

oD, D_,

on ' p
together with the discussions on pages 382 und 383 leading to th-,
values of DJp at the neutral point K, to get the relation between
the displacement D and the length n of the normal line measured
from the neutral point K as shown by curve I in figure 18.
The radius of curvature p can be directly measured from the
assumed shear lines.

(¢c) Repeat the same procedure as under (b) for another
normal line II to get the curve II in figure 18.



Fig. 10

Fig. 11

Fig. 14 Fig. 15
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(d) ltisstill preferable to repeat the same procedure under (b)
for a third normal line I1I to get the curve III as shown in
figure 18.

Q
I,
-
(3
t
§ Z &
g
Q

Fig. 18

(¢) The supplementary equation.

Boundary
f D.dn — Constant
K

states that the areas under curves I, I1 and III must be equal.
If this is not the case, then it can be easily predicted in which
direction the point K has to be shifted so that the corressponding
areas become equal. In the case shown in figure 18 the normal
line 1 has to decrease in length, the normal line III has to be in-
creased in length, while the normal line 1T may be increased or
decreased according to the new conditions. Repeat until the
position of K is known. .

(/) Having fixed the position of the neutral point K, repeat
the procedure mentioned under (b) for a reasonable number of
normal lines until the whole displacement field and subsquently
the whole stress field are determined.

(9) Check the whole procedure using the check equation

fD.ds;:-—2A,

the path of integration being the boundary of the cross-section
in the anticlockwise direction, A, derotes the area of the section.
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(h) Use the displacement curves to draw corrected pattern
of the shear lines, Note that on a normal line we have

oy _

om

(i) The procedure under (b) can now be repeated for a new
normal line to convince the accuracy of the results.

(j) Referring to the discussions on pages 378, 379 and 380
about the twisting moment we see that
 Mi=—26GeV
M, denotes the twisting moment, V equals the volume enclosed

between the cross-section and the surface representing the relation
between ¢’ and x and y in the (x, y, ¢')-space. This volume

is given by
fffdx. dy. dy’

Cnt this volume by a plane parallel to the x-y-plane (y =
constant) to get a shear line. The area enclosed by this shear
line is equal to

S [ axay = Ay
Hence the volume V is given by
V = ff dx. dy. dy' =
S s dx &) dv = fAy ay

This is best done using the shear lines drawn as stated in
(b) on this page.

Numerical Ezample:

In order to illustrate the proposed graphical method a
_numerical example for the twisting of a channel cross-zection
" is shown in the accompaning plate.

The section used is No. 5 of the German standards DIN
1926. Dimensions as well as results are shown in the plate.





