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InTRODUCTION

The object of this work is to study the coefficient of dis-
charge especially for broad crested wirs taking into consideration
the effect of the stream line curvature.

Unfortunately, the effect of the curvature on the pressure
and velocity distribution was always neglected and that led to the
result that the theoretical value of the discharge Q... was not
equal to the effective value Q.5 A correction factor (called the
coeff. of discharge) had to be introduced in the theoretical
equation for Q in order to get Q. (where Qur — 8 Quueor.).
This coefficient u includes the neglected effect of the curvature.

Since the curvature differs from case to case, according to
the shape of the structure, the head, the discharge, the down-
stream conditions, cte., the value of the coeft. of discharge must
therefore be variable.

A mathematical relation between the coeff. of discharge and
these different variable factors is practically impossibie. it
since the shape of the water surface includes always the effect
of the mentioned factors, it will be more logical to find out a
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direct relation between the coeff. of discharge and the curvature
of the flow.

In this work we have succeeded in getting such a relation
which has shown that the coeff. does not depend only on the
curvature of water surface as some hydraulic authors believe, but
also on the inclination of the tangent to water surface at the
critical section.

1t was also found that the results obtained from experiments
carried on scale models of weirs cannot be applicable on the proto-
type. This led to the conclusion that: (it is not necessary, in
case of geometrically similar models, that they will be kinematically
similar).

The equations obtained from this work are, therefore, im-
portant because they are dimensionless and can be applied to
any broad crested weir, whatever its size may be.

L— The relation between the eurvature of the stream lines and
the coefficient of discharge :

Some authors gave theoretical relations between the curvature
of the stream lines and the velocity distribution on vertical
sections. Amongst those are Schorghuber, H. Rouse, and Ch.
Jaeger. Using Euler equations, they came to the same following
result :

dn

p -
v = v,e . . . . N 08 )

where v = the velocity at any. point on the section

I

Vo ’ ’ the surface at the same section.
dn = height of an element.

p — radius of curvature of the stream line passing through
the centre of the element.

This equation gives the distribution of the velocity over a
vertical section. The distribution is not uniform so long as the
stream lines are curved. ‘ '
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Substituting in this equation for p = eo, then v =v,, ..
the velocity distribution will be uniform. This means that the
coefficient of discharge equals 1.

This is not always the case, because the tests carried on all
broad crested weirs, showed that in all cases where the water
surface was straight (where p = co) and when it was inclined
with an angle = ¢ to the horizontal sill, the coefficient of dis-
charge was not equal to 1. Also the pressure distribution on
vertical sections was not hydrostatic. .

The inclination of the tangents to the stream lines plays,
therefore, a role beside the curvature in affecting the coefficient of
discharge.

Consider the general case of a curved flow over a curved bed
as shown in Fig. 1. The water surface describes a curve with
radius = @ surface. ‘Consider an element with the dimensions
dn and ds. The radius of the stream line passing through its
sentre = p. The z axis is normal to the bed and the n axis is
normal to the stream line passing through the centre of the
element (Fig. 1). From that figure it is clear that |

o= = cos ¢ and s _ gin )

d7 d-z
also : dp = 'g._l_’ dn + a

dp
and Sl —yos (@ +0)+

o n A ‘g

3P v o

gs y sin (¢ + ) —gd't

d v y v
o d}}; == cos ¢ [—— y cos (¢ +0O) +3' g]

. . dv,
+sm¢[-—-ysm (¢+e)_yo’(‘it (2)
. >°

In the special case of the broad crested weirs, the sill is
horizontal and © = zero.
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Equation (1) will be

d v2
al) 0s ¢ (~ Y cos ¢ —+
-+ smq)(——ysmtp——-- %—\E—
or - (——— cos? z — €08 )
dz YOS 4 o cos 9
y d
-+ (-— Y sin? ¢ —.= dr sin q>)
Cdp V2
or d~7l," == (g.‘r‘ Coa¢——y) (—-—am ¢) ) (3)
This equation gives four possible cases according to:
(1) ¢ = zero (Fig. 2a).
(2) p = oo (Fig. 2b).
(3) ¢ — zero and p = oo (Hig. 2¢).
(4) ¢ 5% zero and p 5% oo (Fig. 2d).
Case 1: ¢ —= zero, thus equation (3) will be:
dp vy v?
a—;‘:(s-—y) . . . . . (4)

Since H - 2 + g +— ----- (Bexnolh § equation)

after differentiation,
1 1 (lp+ vdv

s N €

o
o

. dp . »
substitute for (TL its valve from equation (4) thus
VA

1 v v vdv
0142 Y V' _ vy
+5.2 « — Ut

v dv

or _—
p dz
dv — dz
v P

or Vi Ve e . . . . . . . (6)
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which is identical with equation (1).

Therefore equation (1) is applicable for this special case.
It is not a general equation.

Case 2: p — oo equation (3) will he:

dp y dv . :
-d—?-:- e —Y - ;'. . ‘T{;" s1tl ¢) . . . (7\

substituting this value in cquation (3) we get

i 1 yd v, . v dv
0 -1 +§[—— Y —-(g—;-&—sm ¢)}+————

g dz
vy dv, . v dv
() — — (=, —-3In b s
(;_r I ome) + o dz
vdv sin ¢ dy, (8)
gdz g T odt ‘ ' ' : '

The solution of this equation is ditticult. Considering
equation (7), the effect of the curvature on the pressure is eliri-
nated by using p = oo, while the effect due to the inclination of
the surface to the horizontal is represented by the term

d v,

Y iy
(y + {(:'; ' -—(_I-t—‘ sin ¢)
Case 3: ¢ =~ zero and p == oo equation (3) will be

dp

dz v

Tt is the case of parallel stream lines, uniform velocity
distribution and hyvdrostatic pressure.

Case 4: ¢ == 0 and p 5& oo

This is the general case in which the velocity as well as the
pressure at any point in any vertical section are effected by both
the curvatvre and the inclination of the stream lines to the
horizontal.

Since the solution of the equation (3) is very difliculs, it ix
intended in this work to separate both effects and study each of
them separately.



— 110 —
1l.—The effect of the inclination of the tangents of the stream
lines on the coefficient of discharge :

The special case of horizontal bed will be studied in thi~
paper. It will be represented by the broad crested weirs with
Poarface = 0. In order to solve this case two assumption~
were made :

Assumption (1) :
The curved planes of equal velocities and equal (5 + z)
are always perpendicular to the boundaries of the flow (Fig. 3).
Assumption (2):
9 is proportional to z

z 9

h o ¢aurface
Where ¢, is the inclination of any stream line at any point in «
vertical section, and @, is the water surface inclination at the
same section.

l.e.

or Qz - qurfuce' % (Flg' 3)

These two assumptions were justified by accurate measure-
ments using a movable pitot-tube which measures the velocities
and pressures in the direction of the stream lines (A Khafagi.
Venturi-Kanal, Theorie und Anwendung, Zurich 1942).

The results showed that the assumption ¢, = ¢,,.. T{

_ , ‘ N

18 true for vertical sections, as well as for the curved plane L.
In the equation Q =bh.v, — . y2g(H =h);b = the

length of the weir. The rest of notations are shown in Fig. 3.

This equation is correct by using the coefficient of discharge
k, in order that the calculated Q will be equal to the actual
discharge. The equation will be :

Q=k,.b h.v,=k, b hy2g (H—h) . (9)
The actual discharge Q = b. h. v,
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Equating this equation with equation (9) we get
v‘

k=2 - - - ... (10)
Also Q =b.L.v, =b. h. v,

Therefore —= = L but Y—— =k,
v, h v,
L
Therefore 3= =k, . . « . . (11)

The coefficient of discharge was calculated first according to
equation Q = k,. b. h. {/2¢g (H-h! and second according to
~equation (11) by measuring L and h. The results tabulated
in Table I showed that both values of k, are equal :

TABLE 1
pig | o hee | Qme | R L ok
Ltrace. cm. ° em. cm. T
6 10-00 4°84 13 (e e] 4'93 1-018 1:019
7 20°00 7768 11 (e e] 779 1°014 1:015
7 30-00 10-07 14 o0 10-28 1020 1°021

$sur. = Inclination of surface at critical section.

R = Radius of curvature of water surface at critical section.

By integrating the lensth of an element along any curve, it
is easy to show that the vugth of this curve (L)

L=y +3ig%0¢.dz . . . . (12)
substituting thi- :ulue in equation (11) thus:
. L S +tg?e.dz :
Lo — . . . 13
A (13)

"»  h
Since ¢, — Ppu -E— assumption (2)
dz(h) dz__hdtp
do \¢ sor.

(*) See Figs. 6, 7. -



— 112 —

P V1 F tele . do -
s k¢ — L—L‘_ -
‘ ) qurf B

or ke :.(’jl-[Ln tg (%ﬂ + 45° )] . . (14)

The values of k¢ can be calculated from equation (14).
They are given in Table 17 . '

TABLE II

%;—_—:——:::-:—::ﬁ_—*;w—_:—»___:ﬁ_mzm.;::

eur. ke Peur. kp | e kg
e e e ————

10 1°014 a0 1°09 70 1°42

20 1030 50 1-16 80 174

30 105, 60 1'26 %0 oo
;‘.Mz——m_h

This gives the coefficient of discharge in the case of R — co.
IfR £ co, the coefficient of discharge will be consisting of two
Parts. The first one is that due to the inclination of the tangents
of the stream lines to the horizontal and can be calculated from
€quation (14), and the second partis that due to the curvature only.

It should be noted-that the effect of the inclination is not
kg itself, but it is the difference between kg and unity (A k¢ =
kg 1). Unity is the coefficient of discharge in the case of
Parallel-horizontal stream lines.

UL —7The eflect of the curvature of the stream lines on the
coefficient of discharge:

Tn this paragraph, the inclination of the stream lines will be
€xelnded. Only the cases where 9 == zero will be considered
(Fig. 4).

The velocity distribution corresponding to these cases follows

the equation (6).
/s
P

vV — \Yo_e . . . . L . LY (6)
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. d .
In order to solve the integral f ;Z, a relation between p

and z must be found.
. hy» .
Let the relation be p — R (7) (assmmnption)
R is the radius of water surface.
For z-—h, p=R

and for z=(), p=oco

1 1 fz)
p R \h
dv  —dv

differentiating equation (6) .-. v e

: dv. =z . dq,
- Therefore YT TR e
P BE

T (n+41). R b

For z=0 .. logv,==C

+ C

PN log V==

(va is the velocity at bed level).

and for z-—-h .-. IOQVo:_um+C

(v, is the velocity at the surface).

From equations (18 and 19) :

log ( v, ) S (bn—_g*f)wl{ —= — K = constant

Va
K is a constant value for a certain profile.
K—f (R, n)
From equation (20)
VoV, .e K

From equations (19 and 20)

l v z‘,n"'l) ])

(1)

(16)

(17)
(18)

(19)

(20)
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or v - v, .e P . . . . . . (23)
z

n+1
where B--f(z)-—-—K (_h.)

Finally the velocity at any point in a certain profile follows
the equation :

v v, .e B _v, . ek-B | . . . (24)

K and B contain the value “n” which is still unknown and
must at first be determined in order to let equation (24) be prac-
tically applicable.

Determination or “n”:

“n” depends on the shape of the velocity distribution.

The measurements of the velocity at different points for
different discharges and different shapes of the water surface
have shown that in the case of the convex water surface, v, is
always greater than v,; where in the case of concave water
surface v, was always less than v, (Figs. 5 to 8).

The mathematical explanation of this phenomena is given
in the following paragraph :

From equation (24), it is clear that the velocity distribution
diagram describes almost a parabola whose axis is at the bed in
the cases where the water surface is convex, i.e. R is positive
(Fig. 9). From this figure :

X oz vy — Vg, but vyo—v, . €K

X —v, . et —v, =v, (ek—1)

Lo

2
X =g v (eK —1)
_17,*7__2_3"._)

The mean value of X — 3

2 .
therefore v, — v, + 3 Vo (e*—1):_v, ( 3

Vi 1 4+ 2eX
",o T g‘-' C == kR . . . . . (25)

Thus the effect due to the curvature only

] 4 2 ¢k 2
I 2 &1 26)

A kR . kR —_1 - 3 3
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kg is the coeflicient of discharge due to curvature

1 is the coefficient of dischorge for parallel horizontal
stream lines. ’

On the other hand, if the water scrface describes a concave
surface, i.e. R is negative, the axis of tha parabola is at the
surface (Fig. 10).

er\'o—-—-\‘__..v,—voex:\'o (1 —eX)
9

—%X.——,—?v (1 —eX)

The mean value of X - -: 3

9

' 2 )
e VeI Y, +§x = v, &k -I—-:—;"\',, (1 —eX) ___:vo'(e";:__._)

- K 9
\-_e +-:'_'kn

T o, 3

N 1D

Thus the effect due to carvature only :

& 2

o
<@

Akg—kg—1— — 1= & —1) (28)

The coefficient of discharge k, was calculated from the
932 _ 3
equation: ) — k, [(i) bygH ] for general cases where
water surface was carved and inclined to the horizontal bed.

The coeflicient due to the inclination only was calculated
from equation (14), then subtracted from unity to get the effect
due to inclination only (Akg == kg —1). This effect Akp was
then subtracted from the total coefficient k, to get the coefficient
due to curvature only (kg = k, — ko).

The values of kg were substituted either in eyuation (25) or
(26) as the case may be, in order 1o get K from which “n” was
determined. It was noticed that the value of “n” was nearly
constant and its mean value in the case of the convex water
surface was doublt its value for the case of the concave one.
In the first case, the mean value of “n” is 1-12 and in the
second case the mean value of “n” is — 0-56.
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The final equation for the coefficient of discharge can, there-
fore, be written as follows:

k --ke -+ Akg

For cases of convex water surface, i.e. where R is positive

then :
kK = b Ln g (-z e 4.")") ~+ 2 (¥ — 1) (29)
¢ sur. B 2 3 R -
. 1. he, .
where I = (n + 17T 212 R . . . (30)

r o ! . h . . .
Values of k for different -i;- and different 2 according to

o l{‘ o
equation (29) were drawn in Fig. 12.

For cases of concave water surface, i.e. where R is negative

then :
sur . 1 . ,
k, = ——— [Ln tg + 400)] + g (eX—1) 1 (31
! sur: !
S — ) SR
. b, h h
ey o oo o e T (39
where K™= 5\ T 056 1) KT 044 R (82)
3 - -
QZ
b, = \/;;53
@ . —= the inclination of the tangent to the water surface

at the position of the eritical section (he:.).

R = the radius of the water surface at the critical section
(positive sign for convex surface, and negative sign
for concave surface).

: » b ) .
Also k_ for different T and different 2 according to
\

equation (31) is drawn in Fig. 13.
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IV.— Discussion of the General Equations 29 and 31:

From Fig. 14, it is noticed that for very small values of h,
the coefficient of discharge is big, decreases rapidly till it reaches
a minimum at values of h between 0-10 and 0-20 m., and then
begins to rise again, but slowly.

This irregular variation of “u” with respect to “h” leads
to the result that the values of p obtained from experiments on
models should never be applied on Prototypes. To make this
clear, we suppose that we have a model for a sharp-edged weir
scale 1:10, and that the max. head on the prototype is 80 cmns.
The corresponding head in the model should be 8 cms. From
Fig. 14, for h = 8 cms. g is 0°637, where for h = 80 cms.
(Prototype) u = 0-788.

Practical examples which support this explanation are the
cases of regulators : Kembs, Klingnanand Rupperswil built across
the Rhein and Aare rivers in Switzerland.

Table 11 after W. Eggenberger gives the dimensions of the

openings and gates as well as the maximum discharges and heads
for the mentioned works.

TABLE I11
- Gates | Max  MaxQ | MaxQ
Regulator River | | \(,_ _of_ TumT drap of ‘over upperi through

%Height Breadth ‘opesings| width [UPPEr gate gate (total); :tohl.)
I “_' ms. . n:s ms. ww:m;. ! mdsec. !_ m’/sec.m
Kembs . . | Rhbein %11-50 30 | 5 {150 | 300 I 1455 i 4200
‘Klingnau . Aare I 7:00! 30 4 120 2°25 ‘ 736 | 2110
Reckingen . | Rhein 112:000 20 | 3 | 60 | 375 | 810 | 2250
Rupperswil. | Aare | 800 22 | 3 | 66 | 250 i 7 | 1230

] : .

‘According to the statements published in 8.B.Z. Bd. 95 April
1930, the maximum possible capacity of the water-structure-
Research lab. in Zurich (Wasserbau Laboratorium der L.T.H.,
Zurich) is 750 lit./sec. where 250 lit.[sec. for the high pressure
head works and 500 lit.[sec. for moderate heads.
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Supposing that we use the whole value of 500 lit.[sec. for
one model only, the scale &, should not exceed the value given

in Table 1V.

TABLL IV

e - LI ‘;;.:".*':”::“_ i =

’ ' ! o - . |
Regulator Max. Q naturelMax. Q model Df ‘ A i 1:4
- e i U i
m®/sec. m®fsec
Kembs . . . . . 4200 1 0500 8400 37 l 1:40
Khngnaw. . . . . 2110 0500 4220 28 1:30
Reckingen . . . . 2250 ‘ 0°500 4500 | 29 S 1:30
i \ |
Rupperswil . . . .~ 1230 l 0°500 . 2460 ! 23 1:25
A |

Using these values in calculating the max. heads in tne
models, we get the values given in Table V.

TABLE V
M};ax. head °‘7t°r 1:4A Max. head over
t
Regulator " in Z;}:‘;;:r(ﬁso; (from II the upper gate
| Table I1I) Table 1V) ! in model
i ms. ' " om. o
Kembs j 3°00 | 1:40 7°5
Klingnau . ! 2°25 1:30 75
Reckingen . . - | 375 1:40 94
! )

Rupperswil . . . | 2°50 l 1:25 10°0

From this table it is obvious that the max. head in all modeis
of the mentioned works does not exceed 10°0 cms.

Taking the case of “Reckingen” as an example and con-
sidering an intermediate value of h (Prototype) equals say 50 cm-.
The corresponding h (model) = 125 cms. According to the
p curve (Fig. 14) we find that g (Prototype) = 0665 and
u (model) == 0-84. The difference is now clear and shows that
the p curves known up till now and the equations which are
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obtained from experiments carried out on models can never be
“applied on Prototypes. 1t is of course clear that the difference
" between p (model) and p (Prototype) decreases with the increase
of the scale of the model. But since the scale of the model is
dependent on the maximum water capacity of the research lab.
as explained before (Table V), it will not be always possible to
choose big sizes of models.

If exact values of Qgrototypey Are required, our equations 29
"*and 31 can, therefores be used. Since these equations contain the
curvature and the inclination of the water surface, and since these
factors can be easily measured in anv weir whatever its size may
be, our equations are, therefore, general equations for broad
crested weirs.

V.—Application :

The discharges of a weir 15 ms. long were accurately measured
by means of the current meter for h = 0-70 ms. and h — 0-90 ms.

The curved water surfaces were measured by means of an
apparatus especially designed and constructed- for this work.
The coefficients of discharges for these two heads were calculated,
once from the equation : '

9\ 3

/2
Qesr. = ko (;) b ¢ H* and once from equation 29

) k, N 1 L q,sur =0 2 K .
T R B | R 1S
where K =-

The results are tabulated in Table VI.
From these results it is noticed that k, and k** are very
nearly equal.

The same measurement and calculations were carried on a
model 1 :25 using model heads corresponding to those of the proto-
type given in Table VI. The results are tabulated in table V1I.
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TABLE VI

TR T
[0 ‘
: By . f
h | Q 1 '° H 1§ her ! ¢sur
i . | i
L] ] ]
— ’ o N
ms m’/ m‘/ ms, l ms, é ms, 0
sec. 1 : i

w !
0°70 "1 09>|0 005 0-705 107497, 21

i

0°90 1647 =0'0125 079125 0°652 23k

TABLE V1l

: | "
¢ her | ook
R "R ko - eqn
R -
ms | i
|

2°60 .0°191|1°086,1°091
270 fo~24lf1~1o9§1‘114

! I N
2 : ' | k)
Yo , ‘ o her D o
h Q 2 H her  Osur R R © | eqn.
R o . n ' 29)
ems | It/m'/| em. | cm. % em. i o0 em. | ’
sec. i : ; :
2°80 ;0°091| 0°02 ! 2°82 51'9551! 22 7 0-28 [1 128 1-125

: : i
360 |0°135] 0705 | 365 :2’650{ 233

85 1031511%() 1°138
i i

A(ram llele the values of Lo and k,’

are equal. Comparing

ralues in both tables, we find that those for the prototype

differ very much from those of the model. This again justifies

our mentioned discussion which comes to the conclusion that it
is not necessary, in case of geometrically similar models, that they
will be kinematically similar,

1.

o 1o

=1

=23

7.
8.
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