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ABSTRACT

The basic idea behind fractional calculus is that it considers derivatives and integrals
of non-integer orders giving extra degrees of freedom and tuning knobs for modeling
complex and memory dependent systems with compact descriptions. This paper reviews
fractional calculus history, theory, and its applications in electrical engineering. The ba-
sic definitions of fractional calculus are presented together with some examples. Integer
order transfer function approximations and constant phase elements (CPEs) emulators are
overviewed due to their importance in implementing fractional-order circuits and con-
trollers. The stability theory of fractional-order linear systems is outlined and discussed.
Four common electrical engineering applications are surveyed. Fractional-order oscilla-
tors allow controlling the phase difference, as well as achieving high oscillation frequency
independently. Fractional order electronic filters are used to provide non-integer order
slopes eliminate the need to round up the filter order and achieve the exact required time
and frequency domain specifications. Studying fractional-order bioimpedance models
provides better fitting to the measured data from fruits and vegetables. Fractional order
DC-DC converter models provide a better estimation of the power conversion efficiency
by incorporating frequency-dependent losses.
KEYWORDS: Fractional-order Circuits, Caputo, Fractional Calculus, Cole-Impedance
Model, DC-DC Converters, Filters, Oscillators.

1. INTRODUCTION

Gottfried Leibniz and Guillaume L’Hôpital are the first ones to wonder about the

existence of the fractional order derivative in the end of the seventeenth century [1].

Since then, many great mathematicians had developed a strong theoretical foundations
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of the topic and, unfortunately, it remained within the boundaries of pure mathematics

for a long time. The early contributors list include but not limited to: Leibniz, L’Hôpital,

Bernoulli, Laplace, Euler, and Fourier [1]. Euler introduced the gamma function as

a generalization of the factorial function and consequently generalized the formula of

the n-th order derivative to the intermediate fractional orders. The first appearance of

Riemann-Liouville fractional integrals and Caputo fractional derivative were presented

in Abel’s approach to solve the tautochrone problem. The systematic formulation of

fractional calculus theory began with Liouville during the mid 19th century followed by

the contributions of Grunwald and Letnikov for the arbitrary order difference [1].

Fractional calculus and fractional-order modeling are areas of mathematics concerned

with the treatment of the processes having non-integer differentiation and integration

orders [2]. Despite the early start in developing the theoretical foundations of frac-

tional calculus, it is only recently when researchers uncovered its strength in modeling

many natural and complex phenomena. The application areas of fractional calculus

and fractional-order modeling include but not limited to: control [3–6], chaotic sys-

tems [7–12], encryption [13–16], super-capacitor modeling [17–19] , filters [20–26],

differentiators and integrators [27], and bioengineering [28–30].

The remaining of this review is organized as follows: Section 2 introduces the basic

definitions of fractional calculus with some examples. Section 3 discusses various integer

order approximation techniques for the fractional Laplacian operator while in Section 4,

different circuit topologies of passive fractance emulators are discussed. The stability

analysis concepts in the fractional domain are summarized in Section 5. Four electrical

engineering applications of fractional calculus are summarized in Section 6 including

oscillators, filters, bio-impedance, and DC-DC converters.

2. FRACTIONAL CALCULUS DEFINITIONS

Fractional calculus is the branch of mathematics that deals with non-integer order

differentiation or integration. This gives the generality feature to the ordinary calcu-

lus. The n-fold integration of f (t) can be calculated according to Cauchy’s formula:
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D−n f (t) = 1
(n−1)!

∫ t
0 (t − τ)

n−1 f (τ)dτ [2]. Where D− denotes the integration process and

D+ is the differentiation. This formula was generalized to a continuous one by Riemann

and Liouville [2] using the continuous gamma function Γ(α) instead of the discrete

factorial as follows:

D−α f (t) =
1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ,α > 0 (1)

which is known as the Riemann-Liouville (RL) fractional integral. There are several

definitions of the fractional differentiation such as RL, Caputo, and Grünwald-Letnikov

(GL) [2, 31]. The fractional differentiation calculation in terms of an integer derivative

and an RL fractional integral. The RL definition of the fractional derivative uses the

ceil function to achieve that Dα
RL f (x) = DdαeDdαe−α f (x). Then, The overall operation

includes two sub-operations. The first one is fractional-order integration, and the second

one is integer order differentiation. The general formula of RL definition of fractional

derivative can be written as follows:

RL
aDα

t f (t) =
1

Γ (m − α)

(
d
dt

)m ∫ t

a
(t − τ)m−α−1 f (τ)dτ. (m − 1 6 α < m) (2)

This procedure results in non-integer order initial conditions which cannot be interpreted

physically. The solution to this problem is the Caputo’s definition of the fractional

derivative, which depends on the same previous idea but with interchanging the positions

of the integer differentiation and fractional integration. Caputo’s definition is written

as: Dα
C f (x) = Ddαe−αDdαe f (x), where the integer-order differentiation occurs first. The

definition of Caputo is as follows:

C
aDα

t f (t) =
1

Γ (m − α)

∫ t

a
(t − τ)m−α−1 f (m) (τ) dτ , (m − 1 < α < m) (3)

Caputo’s definition uses initial conditions of the integer derivatives which can be phys-

ically measured. While, the RL definition uses the initial conditions of the fractional

derivatives which have no physical meaning and cannot be measured. There is another
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(a) (b)

Fig. 1. RL differ-integral of a constant (C) and b f (t) = sin(2t).

difference with RL’s definition, the constant differentiation. Caputo gives the ordinary

answer by zero, while RL gives a solution as follows:

RL
0Dα

t C =
Ct−α

Γ(1 − α)
,C0Dα

t C = 0, (4)

where C is the constant [2]. The RL differ-integral of a constant (C) and a sinusoid

( f (t) = sin(2t)) for −1 < α < 1 are illustrated in Fig. 1.

Grünwald-Letnikov (GL) definition is much similar to the definition of the classical n-

th order derivative. There is a proven correspondence betweenGL and RL definitions [2].

For every (0 < α < n), RL definition exists and coincides with GL definition, if

0 6 m − 1 6 α < m 6 n. This equivalence occurs under the conditions:

1. The function f (t) is (n−1) times continuously differentiable in the targeted interval,

2. f (n)(t) is integrable in the targeted interval.

The GL derivative, in the interval [a, t] is defined as follows:

GL
aDα

t f (t) = lim
h→0

1
hα

b(t−a)/hc∑
j=0

ω
(α)
j f (t − jh), (5)

where ω(α)j are the binomial coefficients, which can be calculated as: ω
(α)
j =

(
1 −

α+1
j

)
ω
(α)
j−1, ω

(α)
0 = 1, j = 1,2,3, .... This approach gives the opportunity to use RL

derivative during the problem formulation, and going back and forth to GL derivative to

obtain numerical solutions. This definition is not interval bounded. Getting an accurate
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result requires the number of terms to be approaching to∞, or at least to be a very large

number.

3. INTEGER ORDER APPROXIMATION OF THE FRACTIONAL ORDER

LAPLACIAN OPERATOR

The behavior of fractional linear systems is mimicked using either traditional integer

transfer functions or digital filters. These approximations are important because [32]:

commercial off-the-shelf constant phase elements are not available, reliable and well

known simulation software are based on integer order calculus. So, having integer

approximation of fractional order systems facilitates the use of these software tools, and

synthesis of fractional order circuit is, in fact, based on integer transfer functions.

Discrete approximations of sα can be converted into continuous approximations and

continuous ones into discrete ones. Since digital approximations normally performworse

than continuous ones, the first alternative is seldom used.

Laplace transform is a mathematical operation that converts a function of a real

variable (t) into a function of a complex variable (s). The Laplace transform of the any

classical fractional derivative (F1 class) under zero initial condition is [2, 31] :

L{0Dα
t f (t)} = sαF(s), (6)

which can be translated to a one-to-one correspondence between derivative term and the

Laplacian operator ( dα
dtα ←→ sα), where s = jω. For the case of sα, the magnitude

is a linear line plotted with the logarithmic frequency axis as shown in Fig.2a. The

phase angle has a single value forming a horizontal line as shown in Fig.2b. Both of the

magnitude and phase obey the following equations:

Magnitude(sα) = 20α log(ω), Phase(sα) =
απ

2
. (7)

This property allows representing Laplacian operator-based transfer function using Bode

diagrams [33]. They have two versions: one is the magnitude and the other is the phase

angle. Both of these plots have logarithmic frequency x-axis. The magnitude and phase
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Fig. 2. Bode diagrams of sα (a)Magnitude of sα for any α and (b) Phase of sα for any α.

are calculated for a given transfer function H( jω) as follows:

H( jω) =
z( jω)
p( jω)

, (8a)

Magnitude(H( jω)) = 20log |H( jω)|, (8b)

phase(H( jω)) = ∠H( jω) = tan−1
(

Im{H( jω)}
Re{H( jω)}

)
= ∠z( jω) − ∠p( jω), (8c)

where z( jω), and p( jω) are the zeros and poles of the transfer function respectively.

Figure 2a and 2b show the effects of zeros and poles on the phase of a transfer function.

Zero would take the phase angle higher, while pole would pull it down. The overall phase

angle is the summation of these ups and downs as indicated in Eq. (8c). Because of the

advances made on integer-order analysis, researchers tended to approximate sα in terms

of integer order s. The trick of integer order approximation techniques is to find a way

to distribute/interlace the poles and zeros to obtain the desired response by zigzagging

about the ideal fractional order response. The desired output should follow Eq. (7).

Therefore, the approximation technique should try to find a representation that oscillates

around απ/2 using the angles’ properties of poles and zeros. Also, the magnitude should

preserve the presented relation in Eq. (7) and Fig.2a.

Many techniques were introduced to obtain distribution of zeros and poles. There

are two categories of approximations according to [34]. The first category is named

continued fraction expansions and interpolation techniques such as the approximations

of Matsuda and Carlson. The second category is characterized by curve fitting and

identification techniques such as Oustaloup. A summary of the design flow charts of
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four approximation techniques is provided in Table 1. The flowcharts show that all

these approximation techniques provide control of the approximation order N and the

fractional order α. However, only Oustaloup and Matsuda have the operating frequency

range as their input parameters. Additionally, the effects of different parameters on each

approximation are depicted in Table 2. For Carlson and CFE, the operating frequency

range is enlarged by increasing N . While for Oustaloup and Matsuda, at a constant

operating frequency range, the phase and magnitude errors decrease by increasing N .

By varying α, it is evident that Carlson approximation is acceptable only at α = 0.5.

4. FRACTIONAL-ORDER CAPACITOR EMULATORS

Resistors, capacitors, and inductors resemble the three basic circuit elements, and they

are related through the formula Z(s) = ksα, where k is a coefficient that contributes to

the impedance magnitude value and α is the order. for α = −1,0,1, the relation repre-

sents the traditional capacitor, resistor, and inductor, respectively. Moreover, Frequency

Dependent Negative Resistor (FDNR) [35] follow this generalized equation as shown in

Fig. 3. Intermediate circuit elements appear in Fig.3 for non-integer values of α. These

devices are called fractances or Constant Phase Elements (CPE), due to their nature of

constant phase at απ/2. The absence of off-the-shelf fractional order capacitors (FOC)

encourages the researchers to find some alternatives. Many trials were introduced to

emulate their behavior through either active or passive circuits.

Examples of passiveCPEemulators are found in [36–38]while examples of activeCPE

emulators are found in [39–41]. Although active emulators allowmore tunability, passive

α π α π/2 α π/2 α π0

α =-2 α =-1 α =1 α =20

Fractional

-order 

capacitor

Fractional

-order 

inductor

FDNR FDNR

Capacitor Resistor Inductor 

Fig. 3. Conventional elements and their relation to the fractional ones.
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circuits based on RC networks are much cheaper. The passive emulators are obtained

through two approaches, the first is a direct circuit approximation such as [36,38,42–44].

The second approach is through using integer order approximations of sα, and converting

them to a network of Lumped elements. The conversion can be done to yield circuits in

the form of Foster-I, Foster-II, Cauer-I, or Cauer-II [45].

4.1 Emulators of α = 0.5

The work of Roy [36] is one of the earliest approaches to build a circuit realization for

FOC. Three different realizations were introduced, which are shown in Table 3. These

designs are for approximating the order α = 0.5 only.Later on, Nakagawa proposed

another network [46]. Nakagawa employed the idea of the geometric mean to obtain a

FOC’s emulator in the shape of a self similar RC tree as shown in Table 3. Increasing

the number of stages enlarges the operating frequency range, but it’s not cost effective.

4.2 Generic Passive Emulators

Sugi proposed a network that emulates the behavior of FOC based on Distributed

Relaxation Time models [37]. The current of a FOC can be expressed in terms of a

superposition decay processes. The proposed two topologies are shown in Table 3.

Valsa proposed another methodology [38, 44], and the networks are shown in Table 3.

This method is analogous to the work of [42, 47]. The advantage of Valsa is the ability

of controlling the phase variation.

8



FR
AC

TIO
N

A
L

C
A

LC
U

LU
S

D
EFIN

ITIO
N

S,A
PPR

O
X

IM
ATIO

N
S,...

Table 1. Flowcharts depicting the process of four approximation techniques.
Carlson Matsuda Oustaloup Krishna (CFE)

𝛼: fractional-order

𝐻0 𝑠 = 1

Start

𝛼 =
𝑚

𝑝
, 𝑘 =

𝑝−𝑚

𝑝+𝑚

End

𝐻𝑖 = 𝐻𝑖−1 𝑠
𝑠 + 𝑘[𝐻𝑖−1(𝑠)]^2

𝑘 𝑠 + 𝐻𝑖−1(𝑠)
2

ωmin: minimum frequency 
ωmax: maximum frequency 
𝑁: approximation order

Start

𝐻 𝑠 = 𝑠𝛼

𝑑0 𝜔 = 𝐻 𝑗𝜔

𝑑𝑖 𝜔 =
𝜔−𝜔𝑖−1

𝑑𝑖−1 (𝜔)−𝑑𝑖−1(𝜔𝑖−1)
,  i=1,2, …,2N

End

𝐻 𝑠 ≈ 𝑑0 𝜔0 +
𝑠 − 𝜔0

𝑑1 𝜔1 +

𝑠 − 𝜔1

𝑑2 𝜔2 +
…

ωmin: minimum frequency

ωmax: maximum frequency

𝑁: approximation order

Start

𝜔𝑧,𝑖 = 𝜔𝑚𝑖𝑛

𝜔𝑚𝑎𝑥

𝜔𝑚𝑖𝑛

(2𝑖−1−𝛼)/2𝑁

𝜔𝑝,𝑖 = 𝜔𝑚𝑖𝑛

𝜔𝑚𝑎𝑥

𝜔𝑚𝑖𝑛

(2𝑖−1+𝛼)/2𝑁

End

𝑠𝛼 ≃

ς𝑛=1
𝑁 (1 +

𝑠
𝜔𝑧,𝑖

)

ς𝑖=1
𝑁 (1 +

𝑠
𝜔𝑝,𝑖

)

𝛼: fractional-order

𝑁: No. of iterations

Start

𝐻 𝑠 =
1

1 −
𝛼(𝑠 − 1)

1 +
(1 + 𝛼)(𝑠 − 1)

2 +
(1 − 𝛼)(𝑠 − 1)

3 + ⋯

End
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Table 2. The magnitude and phase responses of four approximation techniques.
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Table 3. Examples of passive emulator circuits for different α values.
Emulators of α = 0.5 Emulators of any α.
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CαC

α
n sinαπ
π λαi ∆(ln λ)

]−1
,

Ci,p =
CαC

α
n sinαπ
π λα−1

i ∆(ln λ)
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5. STABILITY
Systems can be modeled using differential equations which can be transformed to its

counterpart in s-domain using Laplace transform. Checking the system stability is one

of the advantages of this transformation. The characteristic equation of a commensurate

order fractional order system is
∑N

k=0 ak skα = 0. Stability analysis is a discussion about

the location of the poles of the characteristic equation and how they affect the time

domain response of the system. The response is required to be bounded for any bounded

excitation signal.

A new domain was introduced in [48] known as the W-plane. This method is for

the rational powers, which can be written in the form α = k/m, where k and m are

positive integers. Mapping the roots in s-domain to W-plane, requires introducing

W = s1/m, which makes the mapping process independent on k. The unstable region is at

(|θW | < π/2m). The stable region is when (|θW | > pi/2m), which includes physical and

non-physical roots. Physical roots have correspondence to the s-plane while non-physical

ones don’t. The stability regions of the W-plane are illustrated in Fig.4.

A general procedure for analyzing the stability of a linear fractional-order differential

equation was introduced in [48] for equations on the following form:

N∑
k

ak sk/m =

N∑
k=0

akW k = 0, (9)

whereW = sk/m, and it is a polynomial of order N . The first step is to calculate the roots of

𝑅𝑒𝑎𝑙(𝑗𝜔)0

stable

𝐼𝑚𝑎𝑔(𝑗𝜔)

unstable

oscillatory

(a)

0

𝜋

2𝑚

stable

𝜋

2𝑚

unstable

𝜋

2𝑚

𝜋

2𝑚

unstable

stable

Non physical area

(b)

Fig. 4. The stability regions for sα (a) conventional s-plane at α = 1 and (b) the W-plane.
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Table 4. Summary for the cases of quadratic equations.
Relation condition physical roots
b < 0 or (a2 ≥ b and a < 0) unstable independent on α
a2 ≥ b and a > 0 and b > 0 stable if α < 2 α < 1
a2 < b and a > 0 and b > 0 stable if and only if α < 2

π
δ ,

where δ = cos−1(√−a
b
) > π

2

α > δ
π

a2 < b and a < 0 and b > 0 stable if and only if α < 2δ
π

where δ = cos−1(−a√
b
) < π

2

α > δ
π

Eq. (9) for given ak . Then, finding the minimum absolute phase for all roots |θWmin |. The

stable region is when (|θWmin | > π/2m), the system is oscillatory at (|θWmin | = pi/2m),

and it is unstable otherwise. Table 4 shows a summary for the conditions of stability,

as well as the physical roots existence condition for the cases as introduced in [48] for

system having a characteristic equation of the form s2α + asα + b = 0.

For the case of fractional-order characteristic equation, the procedure of [48] is applied

and validated for the following cases and summarized in Table 5(1) s2α + 4sα + 1 and (2)

s2α − 4sα + 1, for 0 < α ≤ 2. This representation employs the same 1/m to show how

the stability is affected by the sign of parameters. The theory of fractional-order stability

using W-plane concept [48]is a milestone in this research area. It is one of the grounding

concepts and many researchers make use of it in many applications.

6. APPLICATIONS

6.1 Oscillators
Oscillators are widely used in many applications [49] such as: communications

(modulation and demodulation), generating clock pulses for microprocessors and micro-

controllers, testing and measurements, times and clocks, signal generators, alarms and

buzzers. Fractional-order oscillator circuits have two main types according to the nature

of the generated signal: sinusoidal and relaxation. Introducing the fractional-order

permits an extra design degree of freedom.

The theory of fractional-order sinusoidal oscillators was presented in [50]. It included

the design procedure of oscillator of any number of fractance devices. Many fractional-
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Table 5. Some stability cases for s2α ± sα + 1 for (0 < α ≤ 2)
1
m s2α + 4sα + 1 s2α − 4sα + 1

1
4

-4 -2 0 2 4
real (W) 

-4

-2

0

2

4

Im
ag

(W
)

 = 1/4
 = 3/4
 = 5/4
 = 7/4

-4 -2 0 2 4
real (W) 

-4

-2

0

2

4

Im
ag

(W
)

 = 1/4
 = 3/4
 = 5/4
 = 7/4

1
2

-4 -2 0 2 4
real (W) 

-4

-2

0

2

4

Im
ag

(W
)

 = 1/2
 = 3/2
 = 5/2
 = 7/2

-4 -2 0 2 4
real (W) 

-4

-2

0

2

4

Im
ag

(W
)

 = 1/2
 = 3/2
 = 5/2
 = 7/2

order oscillators were reported in literature based on the introduced theory such as

[51–56]. All possible fractional order oscillators depending on the two-port network

conceptwas proposed in [51,54,57]. Nine possible oscillatorswere investigatedwith their

mathematical formulas in [58]. Another work showed the design procedure of sinusoidal

oscillator using differential voltage current conveyors (DVCC) [59]. A general procedure

for designing an oscillator with a specific phase and frequency was also included in [53].

The general state-space formula of the Wien-bridge oscillator shown in Fig. 5a was

proposed in [50] and can be written as follows:

©­«
DαVC1

DβVC2

ª®¬ = ©­«
a−1
R2C1
− 1

R1C1
−1

R2C1
a−1
R2C2

−1
R2C2

ª®¬ ©­«
VC1

VC2

ª®¬ + ©­«
b

R2C1

b
R2C2

ª®¬ , (10)

where α and β are the fractional-order differentiation. The values of (a,b) are char-

acterized as: (a, b) = (0,Vsat) when KVC1 ≥ Vsat , (K,0) when −Vsat < KVC1 < Vsat ,

and (0,−Vsat) when −Vsat ≥ KVC1 where Vsat is the saturation voltage of the employed

operational amplifier and K is the gain factor, and its value is (1+ R3
R4
). Subsequently, the
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characteristic equation can be written as:

sα+β + (
K − 1
R2C1

−
1

R1C1
)sβ + (

1
R2C2

)sα + (
1

R1R2C1C2
) = 0. (11)

The following procedure is substituting each s by jω, then separating the real and

imaginary equations. Thus, Eq. (11) turns into:

ωα+βcos
(
(α + β)π

2

)
−

(K − 1
R2C1

−
1

R1C1

)
ωβcos

( βπ
2

)
+

( 1
R2C2

)
ωαcos

(απ
2

)
+

( 1
R1R2C1C2

)
= 0,

(12)

ωβsin
(
(α + β)π

2

)
−

(K − 1
R2C1

−
1

R1C1

)
ωβ−αsin

( βπ
2

)
+

( 1
R2C2

)
ωαsin

(απ
2

)
= 0, (13)

Sustained sinusoidal oscillation is achieved if solving Eqs. (12,13) results in a real

value for oscillation frequency. Moreover, the oscillation condition K is the value at

Table 6. Design parameters of Wien oscillator
case K ω φ

α = β , 1 1 + R
R2

1
+

C1
C2
+ 2

√
R2C1
R1C2

cosαπ2 ( 1
R1R2C1C2

)
1

2α −tan−1

(
sin( απ

2 )√
R1C1
R2C2

+cos( απ
2 )

)
α = β , 1

3 + 2cosαπ2 ( 1
RC )

1
α

−απ
2R1 = R2 = R

C1 = C2 = C

α = β = 1 1 + R2
R1
+

C1
C2

√
1

R1R2C1C2
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Fig. 5. (a) Wien-bridge oscillator , and (b) Simulation results.
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which this real solution exists. This solution scheme starts by excluding the term K from

the two formulas of Eqs. (12,13). Consequently, the resultant equation contains only

one unknown, the oscillation frequency (ωosc). Due to the difficulty of having closed

formulas for the oscillation condition and frequency, some special cases are summarized

in Table 6.

According to Table 6, The oscillation frequency gets higher values for α < 1. For

example, the case of equal R, C, and α, the integer order Wien oscillator whose values

(R = 1 kΩ, and C = 100 nF), has oscillation frequency ω = 10 krad/sec. In the case of

employing fractional-order capacitor, utilizing the same components’ values despite of

the order α = 0.8, the resultant frequency is 100 krad/sec, which is 10 times the integer

order case. The simulation of this fractional-order case is depicted in Fig. 5b, where

the dotted and solid lines are Vc1 and Vc2 , respectively. Moreover, the phase difference is

more controllable in case of fractional-order oscillator as shown in Table 6.

6.2 Filters
The first systematic analysis of fractional order filters was introduced in [60,61], then

many studies followed. The fractional-step Tow-Thomas filter was studied in [62] where

the filter topology was generalized to realize band-pass and low-pass filters based on CFE

approximation. The detailed analysis of the fractional order Butterworth filter was carried

out in [63]. Also, the least square optimization algorithmwas used in [64] to approximate

the stop-band behavior of fractional order inverse Chebyshev filter. In [21], steps for

the realization of fractional-order complex Chebyshev filter were introduced. In [65],

the fractional order low-pass, band-pass and high-pass inverse filters were investigated

using different approximation techniques. A design procedure for the fractional order

Chebyhshev filter having the same poles as the integer order ones was presented in [66].

Fractional-order filters have an extra degree of freedom compared to the conventional

ones.

There are some critical frequencies to be calculated for fractional order filters:

• Cutoff(half power) frequency (ωc): at which the power drops to half the pass band
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Table 7. Important frequencies of FO BP filter.
ω = |T( jω)| ∠T( jω)

0 0 π
2

ωo 2a
baβ/α
(απ4 )

βπ
2 −

απ
4

at∞ bω(β−α) (β−α)π
2

ωm
d

asin(απ2 )
(1−α)π

2

ωh
d

a
√

2
tan−1

(
sin(απ2 )

2cos(απ2 )+
√

1+cos2(απ2 )

)
ωrp

d
a cot(απ2 )

π
2

|T( jωc)| =
|T( jωpass band,a,b,α)|

√
2

.

• Maximum frequency (ωm): atwhich themagnitude has amaximumand it is obtained

by solving d
dω |T( jω)|ω=ωh

= 0, and it can be solved for a certain maximum value.

• Right phase frequency (ωrp): at which the phase ∠T( jωrp) = ±
π
2 , and the transfer

function is pure imaginary.

An example of simple fractional-order Band Pass Filter (BPF) of the following transfer

function has the magnitude response shown in Fig. 6:T1(s) = bsβ
sα+a . Some important

frequency values are summarized on Table 7. In case of β < α, lim
ω→∞

|T( jω)| = 0.

Therefore, the filter acts as a Band Pass Filter. The other case of β = α leads to

lim
ω→∞

|T( jω)| = b. Thus, the filter develops into a High Pass Filter. In case of β = α = 2,

the center frequency ωo equals to the maxima frequency. Figure 6 depicts this idea for

an example of BPF of equal a and b. The three aforementioned cases are characterized

for constant α = 0.9 and three different β values at (B = 0, α/2, α).

Fig. 6. Example of fractional-order simple fractional BPF.
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6.3 Bio-impedance

Bio-impedance is the biological tissue resistance to an applied electrical excitation

as shown in Fig. 7 [30]. It is mainly affected by the cell shape and the structure of its

membrane [67]. Measuring bio-impedance is a vital indication for any change in cells’

structure. It has many applications in different areas such as in medicine [68]. Moreover,

it is employed in food industries, to evaluate the state of the tested item. Measuring

the maturity or estimating lifespan for storage purposes of fruits and vegetables using

the electrical impedance characteristics as achieved in [69]. Moreover, it is employed in

monitoring the effects of drying and freezing/thawing treatments on eggplants [70].

The application of bio-impedance rely on the electrical modeling of the tissue cell.

There are many introduced models in the literature trying to emulate the most real

response. The circuit elements in each topology mimics a component of the tissue cell.

The fractional-order based models showed more accurate results compared to its integer

counterparts [30,71]. Table 8 shows a summary of some fractional-order circuit models

the tissue cell.

The single dispersion model was employed in many applications such as assessing the

quality of stored red blood suspension [68]. Measuring thematurity or estimating lifespan

for storage purposes of fruits and vegetables using the electrical impedance characteristics

is achieved in [69,72]. The double dispersion Cole model is found in many applications

such as the characterization of intestinal tissue excised from sheep [73]. The age-related

(a) (b) (c)

Fig. 7. (a) Bio-impedance measurement schematic. (b) SP150 impedance analyzer
experimental setup. (c) Portable impedance analyzer.
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Table 8. Examples of fractional-order bio-impedance models.
Model
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changes of dentine was investigated for potential nondestructive dental tests in [74]. The

fractional-order simplified Hayden and double shell models were proposed recently [71].

Electro-chemical Impedance Spectroscopy (EIS) is the most widely knownmeasuring

methodology. The basic setup and connections of EIS are depicted in Fig. 7. It involves

exposing the targeted tissue as a black box to a wide range of frequencies. Then,

optimization algorithms are employed to fit the results to the best model [76]. There are

many measuring techniques such as transient time measurements, where a step function

of voltage is applied to the targeted impedance, then applying Fast Fourier Transform

(FFT) on the the resultant current [77].

Most commercial impedance analyzers such as the SP150 (see Fig. 7) and their

associated programs have built-in function that allows the user to fit the measurement

either to well-known impedance models or even a user-defined one. The common fitting

technique is the complex nonlinear least squares technique (CNLS). Although it might be

satisfactory in some cases, when the model gets more complicated it gives un-acceptable

fits. This is due to the fact that CNLS is a gradient based optimization technique,
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also known as deterministic technique, which is prone to local minima and measurement

outliers. Recently, researchers usedmeta-heuristic optimization algorithms to identify the

parameters of many bio-impedance models. They mimic the searching/hunting behavior

of animals in nature in order to find the global optimal solution and are less likely to fall

into local minima of the optimization problem due to a balance between intensification

and diversification of their search agents. Examples of these algorithms include flower

pollination algorithm (FPA), grey wolf optimizer (GWO), moth flame optimizer (MFO),

grasshopper optimization algorithm (GOA), whale optimization algorithm (WOA).

Three items must be defined in any optimization problem. Theses items are the search

vector, the objective function, and the feasible region. In parameter estimation of bio-

impedance models, the search vector has a dimension equal to the number parameters to

be identified. For example, in case of single dispersion model, the parameters are R0, Cα,

R∞, and α, so the dimension of the search vector is 4 and is written as X = [R0,Cα,R∞, α].

For the objective function, the common one in literature is the some of absolute error

given as SAE =
∑M

i=1 |Zi − Z̃i |, where M is the number of data-points, Zi is the measured

complex impedance at frequency ωi, Z̃i is the estimated impedance at frequency ωi and

is calculated from the model formula as Z(s) = R∞ +
R0−R∞

1+sα(R0−R∞)C
.

The feasible region is described through implying constraints on the search vector

variables. For example, in case of identifying the model parameters of Lemon, the lower

limits are defined as lb = [10k,1n,1,0.4], and the upper limits are defined as ub =

[500k,1µ,10k,1.0]. The same formulation can be made for identifying the fractional

order Hayden model and the fractional order double-shell model .

When comparing the performance of different meta-heuristic optimization techniques

at solving this problem, three main aspects are defined which are accuracy and con-

sistency, objective function final value, and run-time. The accuracy and consistency

means the algorithm achieves almost the same results in each independent run. This is

measured from the standard deviation of the results of all independent runs made on the

same PC. Lower standard deviation means more accurate and consistent algorithm. It

was found that FPA is the most consistent in solving this problem. The run-time needed
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to get the results depends on two main factors, the convergence speed of the algorithm,

and the number of calculations per iteration of the algorithm. Unfortunately, usually

meta-heuristic optimization techniques takes longer run-times than gradient based algo-

rithms like CNLS and nonlinear least squares (NLS). This means that there is a trade-off

between speed and accuracy in this case. The fit results of identifying the bioimpedance

parameters of lemon are shown in Table 8.

6.4 DC-DC Converters
In the ideal case, the energy storage elements are lossless and the efficiency of the

system is 100%. However, in practicality, the coils have many types of losses. One of

these types is the hysteresis loss which results from the use of ferromagnetic cores that

retain magnetization and increases both the inductance and losses which were found to

be frequency dependent [78]. This is due to the fact that the coils in power converter

operate near their magnetic saturation levels where the magnetic losses and skin effect

can not be modeled linearly. Fractional order models can be used here to provide an

accurate emulation of such losses associated with inductors inside DC-DC converter

operating conditions.

The circuit schematic of the Buck DC-DC converter topology is illustrated in Fig. 8.

The converter has two switches, one inductor and one capacitor. Switch S1 is usually is

the active bidirectional switch while switch S2 is the passive uni-directional switch. In

continuous conduction mode (CCM), the circuit has only two states: when S1 is on and

S2 is off, and when S1 is off and S2 is on. In discontinuous conduction mode (DCM),

another state is added which is both switches are off. Analysis of fractional order DC-

DC converter in literature is either concerned with the steady state behavior [79] or the

transient behavior [80].

The generalized procedure for steady state analysis of fractional order DC-DC con-

verter in CCM mode can be summarized as follows. Assume that, at steady state, the

voltage across the fractional-order inductor is constant during each switching state and

changes accordingly between v1 in the interval [nT, (n + D)T] to v2 in [(n + D)T, (n + 1)T]
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Fig. 8. (a) Buck converter. (b) Gain vs duty cycle. (c) The efficiency.

where n ∈ Z+. Where v1is the voltage across the inductor when the active switch is ON

and the passive switch is OFF (diode is reverse biased), while v2 is the inductor voltage

when the active switch is OFF and the passive switch is ON (diode is forward biased).

Another assumption is that the capacitor ripple voltage is negligible. Also, assume that

the inductor current has stabilized which means no rising or falling in its average value,

so the inductor current value at t = nT will be the same and is equal to iL2 (T, α). For

simplicity, we will write the equations of the current waveforms in the first period (n = 0).

Therefore, the current iL (t, α) is given by: in the interval t ∈ [0, DT]

iL1 (t, α) = iL2 (T, α) +
1

LΓ (α)

∫ t

0
(t − τ)α−1 v1dτ = iL2 (T, α) +

v1tα

LΓ (α + 1)
. (14)

In the interval t ∈ [DT,T]

iL2 (t, α) = iL2 (T, α) +
1

LΓ (α + 1)
(v1tα + (v2 − v1) (t − DT)α) . (15)

By setting t = T in equation (15), the relation between v1 and v2 becomes:

v1Tα+ (v2 − v1) (T − DT)α = 0 −→
v1
v2
=
(1 − D)α

(1 − D)α − 1
−→ D = 1−

(
v1

v1 − v2

) 1
α

. (16)

which is the fractional equivalent of the inductor volt-second balance.

In case of the fractional order buck converter, by substituting v1 and v2 with (vin − vout)

and (−vout), respectively in the previous equation, the duty cycle D and voltage gain G
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can be written as:

D = 1 −
(
vin − vout

vin

) 1
α

,G =
vo

vin
= 1 − (1 − D)α. (17)

Note that when D = 1, then vout = vin for any value of α. It is evident that D increases

for smaller values of α to compensate for the inductor fractional losses. The relation

between the gain G and the duty cycle D at different values of the fractional order α is

shown in Fig. 8b.

The efficiency is calculated as the ratio between average energy dispatched to the

load and average energy taken out of the source and assuming the steady state operation

condition which means that the input and output voltages variations are negligible.

Therefore, the average power efficiency in this case is given as [79]:

η =
Eout

Ein
=

D
(1 − (1 − D)α) iload

[
iload −

vinTα

LΓ (α + 2)
(1 − D)α (Dα − D)

]
, (18)

where iload is the average load current. Figure 8c shows the efficiency of the buck

converter at as a function of α and iload . It is evident that the efficiency degrades with

decreasing α and iload .

7. CONCLUSION

A literature survey was presented about the fractional calculus fundamentals, integer-

order approximations of fractional-order transfer functions, fractional-order element

realization, fractional-order circuits and applications, and stability analyses of fractional-

order linear systems. The investigated applications included fractional-order oscillators,

filters, passive emulators, bio-impedance modeling and DC-DC converters. In most

cases, the fractional-order models are more accurate than the integer-order ones. All

fractional operators consider the entire history of the process being considered, thus be-

ing able to model the non-local and distributed effects often encountered in natural and

technical phenomena. The extra degrees of freedom give different design alternatives due

to the fractional-order parameters. Fractional-order models provide an improved descrip-
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tion of observed bio-impedance behavior. Additionally, the fractional-order enhanced the

model of DC-DC converters by incorporating the effect of frequency-dependent inductor

loss.
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