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ABSTRACT 
 

In this paper, a new boundary element technique is presented to predict the 

settlement and stresses of non-homogeneous soil. Unlike the traditional Boundary 

Element Method (BEM), the innovative part of the presented formulation is that the 

soil continuum under arbitrary loadings is divided into boundary element sub-regions, 

where each sub-region can be regarded as a super finite element. Hence, the stiffness 

matrix of each sub-region is computed. Such stiffness matrices are computed at 

interface nodes and are assembled and used to calculate the displacements at interfaces. 

As a post-processing step, each sub-region is solved separately. Due to the geometrical 

complexity of the problem, a new preprocessing tool is developed to generate all 

relevant data. Several numerical examples are solved. The presented technique results 

are in a good agreement with analytical solution, previously published results and the 

traditional Finite Element Method (FEM) with less computational effort. 
 

KEYWORDS: Boundary element method, stiffness method, non-homogeneous soil, 

3D elasticity 
 

1. INTRODUCTION 
 

Modelling soil as a three-dimensional continuum is essential for complicated 

and practical problems that appear in reality. Soil problems are huge inherently; 

therefore, there are several FEM based commercial software packages used to model 

soil problems such as PLAXIS 3D [1, 2], MIDAS [3, 4], etc. These commercial 

software packages simulate soil media as finite elements; therefore, it is limited to small 

or relatively medium problems. As will be demonstrated in section (4), the Finite 
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Element (FE) discretization is limited to certain level of refinement due to the storage 

needed. Moreover, its level of accuracy is also limited to a certain level. 

Alternative to FEM, simplified models were developed to solve the soil 

problems. One of these simplified models is Elastic Half Space (EHS) models such as 

Mindlin [5, 6], Boussinesq [7-9], and Steinbrenner [10, 11]. EHS models consider the 

soil as infinite elastic and homogeneous continuum. Steinbrenner [10, 11] model can 

simulate the existence of rigid layer at specific depth. Despite the simplicity of these 

models, they cannot model the non-homogeneous soil problems. 

Other methods are developed to simulate the non-homogeneity of soil in vertical 

direction such as finite layer method [12-14] and stiffness method [15-17]. The 

disadvantages of these models are the soil layers must be horizontal layers only and 

therefore could not simulate general and irregular non-homogeneity of soil. 

A new single region BEM has been developed for analyzing the non-

horizontally layered half-space where the horizontal boundary surface subjected to 

tractions [18]. In addition, the soil layers are modeled as parallel layers with a specific 

inclined angle between the soil surface and the layer’s direction. Generalized Kelvin 

solution was used to eliminate the discretization of internal interface surfaces. In 

addition, infinite elements were used to take the effect of far fields. It can be seen that 

this method is limited to problems where all soil layers are parallel. 

Mindlin’s fundamental solution has been used together with sub-region 

approach to model two zoned soil only [19]. In addition, infinite elements were used 

for far field only. The disadvantage of that method is that it fails in case of existence of 

thin layers as in case of geotextile.  

It has to be noted that all these methods have a complicated mathematical model 

and used to solve a special cases of non-homogeneity in addition; the need of infinite 

element within the context of BEM gains too little improvements. Therefore, it is not 

applicable for practical problems where irregular non-homogeneity appears. Therefore, 

there is a need to develop a methodology to simulate soil problems with arbitrary non-

homogeneity as the case of FEM together with less storage and high accuracy of the 

BEM. 
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Therefore, in this paper, a 3D multi-region analysis using stiffness based 

boundary element method is developed. The soil media is divided into boundary 

element sub-regions with zero Dirichlet boundary condition in the far fields. Each sub-

region can be regarded as super finite element and stiffness analysis is used to solve the 

overall problem.  

Most of the open source preprocessing programs are FE oriented programs, 

therefore a new boundary element preprocessing program is developed to generate all 

relevant problem information in the desired format. Numerical examples are presented 

and results are compared to previously published results. The results demonstrate the 

validity of the proposed technique. 

 

2. THE PROPOSED FORMULATION 
 

In this section, analysis of general non-homogeneous soil media using the 

proposed three-dimensional boundary element formulation is presented.  Generally, 

soil continuum is discretized into 3D sub-regions (Nn) as shown in Fig. 1 and is modeled 

as 3D boundary element method. Load vector and stiffness matrix of each sub-region 

is extracted as presented in the next sub-sections. Hence, assembly procedure is 

proposed to solve the overall system. It has to be noted that each sub-region could be 

regarded as super finite element and this is the main idea of the proposed formulation. 

 

Fig. 1. The considered soil continuum discretized into Nn sub-regions. 
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2.1 Sub-region Boundary Element Formulation 
 

Consider a general 3D sub-region boundary Γ as shown in Fig. 2. The indicial 

notation is used, where the Roman indices vary from 1 to 3. The relevant integral 

equation could be written as follows: 

             𝐶𝑖𝑗(𝜉)𝑢𝑗(𝜉) + ∫ 𝑇𝑖𝑗(𝜉, 𝑥)𝑢𝑗(𝑥)𝑑𝛤(𝑥)
𝜞(𝒙)

= ∫ 𝑈𝑖𝑗(𝜉, 𝑥)𝑡𝑗(𝑥)𝑑𝛤(𝑥)
𝜞(𝒙)

           (1) 

Where Tij(ξ, x), Uij(ξ, x) are the two-point fundamental solution kernels for 

tractions and displacements respectively [20]. The two points 𝜉 and x are the source and 

the field points respectively. uj(x) and tj(x) denote the boundary generalized 

displacements and tractions. Cij(ξ) is the free term. After discretizing the boundary of 

the region into Ne linear surface boundary elements, Eq. (1) could be re-written in a 

matrix form as follows: 

 

 

 

         (2) 

 Where, NI and Ng are the numbers of interface and general nodes respectively. 

[H] and [G] are the well-known influence matrices. The vectors {uI}, {ug}, {tI} and 

{tg} are the interface nodal displacements, general nodal displacements, interface nodal 

tractions, and general nodal tractions respectively. 

 

 

 

 

 

 

 

 

 

Fig. 2. Surface discretization of an arbitrary 3D boundary element sub-region. 
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2.2 Computation of Sub-region Stiffness Matrix 
 

In this section, Eq. (2) is re-used to extract the stiffness matrix of each sub-

region. Stiffness matrix of the sub-region is extracted at the degrees of freedom of 

interface nodes (3NI). In order to force {tI} to represent the stiffness matrix, 3NI cases 

of loading are considered. Each considered load case is set to have a unit generalized 

displacement in a single degree of freedom and zeros at the other degrees of freedom. 

That means, the vector {uI} is replaced by a matrix [uI] with size 3NI x 3NI and is forced 

to be the unity matrix [I], as follows: 

 

 

 

      (3) 

Where [K] is the required sub-region stiffness matrix. It has to be noted that, 

general nodes could have prescribed displacements or tractions. Therefore, the 

influence matrices [H] and [G] are reordered to force the matrices [B] and [C] to be the 

known and unknowns values respectively. H*
2, H*

3, H*
4, G*

2, G*
3, and G*

4 are the new 

influence matrices after re-ordering the general degrees of freedom. It can be seen from 

Eq. (3) that each column of the matrix [C] represents the unknown displacements {ug} 

and tractions {tg} of general nodes corresponding to the associated stiffness cases. This 

matrix will be re-used in the post-processing stage. Stiffness matrix of the sub-region 

interface nodes degrees of freedom [K] and the corresponding general nodes 

displacements and tractions values corresponding to the associated stiffness cases [C] 

can be computed by solving Eq. (3).  

 

2.3 Computation of Sub-region Load Vector 
 

In order to obtain the sub-region load vector at interface nodes degrees of 

freedom, all interface displacements are set to be zeros, therefore Eq. (2) is re-written 

as follows: 
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    (4) 

 

Recalling that the general nodes could have prescribed displacement or traction 

values, Eq. (4) is re-ordered and re-written as follows: 

 

 

 

      (5) 

Where, {bg} is a known vector of the prescribed tractions or displacements. {tI0} 

and {xg0} are the tractions at the fixed interface nodes due to region loads (which is the 

required load vector) and the unknown vector at general region nodes respectively.  

 

2.4 Analysis of Overall Soil Continuum 
 

Once the stiffness matrix [K] and the load vector {tI0} of each sub-region are 

computed (recall Eqs. (3, 5)), assembly procedure is performed to form the global 

stiffness matrix and load vector of the non-homogeneous soil continuum at the interface 

degrees of freedom. Overall system equilibrium equation could be written as follows:  

 

        (6) 

Where, [Kall], {uall}, and {Pall} are the overall stiffness matrix, unknown 

displacements, and load vector of  all interface degrees of freedom of the overall media 

respectively. It can be seen that such assembly procedure is similar to the well-known 

finite element procedures which makes the presented formulation is very versatile to 

be linked with FEM. It has to be noted that NIt is the total number of interface nodes 
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between all sub-regions of the soil continuum. By solving Eq. (6), the displacements at 

interface nodes are computed. 

 

2.5 Sub-region Post-processing Stage 
 

In the post-processing, tractions and displacements at any sub-region node on 

the boundary (general or interface node) could be computed as follows: 

 

   

                (7) 

Where, the index j denotes the sub-region number and vary from 1 to Nn. In 

addition, post-processing can be performed to evaluate any internal point at any sub-

region using the integral Eq. (1), in which the matrix form in this case could be written 

as follows: 

 

 

 (8) 

 

Where, H5, H6, G5, G6 are new influence matrices between the internal points (Nint) 

and the other nodes. {uint} is displacement vector of internal points. 

 

3. THE DEVELOPED PREPROCESSING TOOL 
 

Although there are a number of open source FE oriented programs that perform 

the meshing process for a three-dimensional problems such as the Gmsh [21], there is 

a need to perform the meshing with a different orientation to be compatible with the 

requirements of solving a 3D Boundary Element (BE) problem (as the problems 

considered herein). In multi-region 3D BE problems, the contact surfaces must be 

discretized with a specific way as shown in Fig. 3, where the matching nodes must have 

the same number and the element nodes incidence depends on the type of relevant 

region. In this section, a new 3D Boundary Element Preprocessing Program (BEPP) 

has been developed to configure all relevant data to the developed program with the 

desired way.  
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Fig. 3. Soil continuum discretized using transition elements. 

 

The BEPP generates all the needed element information such as, element’s 

nodes incidence, element’s node coordinates, and region’s elements number. In 

addition, transition elements could be used to change the number of division in the 

loaded sub-region surfaces from other sub-region surfaces. This change is applicable 

in both horizontal and vertical directions as shown in Fig. 4.  

 It has to be noted that, using BEPP, the prescribed values of Dirichlet and 

Neuman BC can be assigned to sub-region surfaces. Hence, the prescribed values of 

elements BC could be extracted automatically. 

 

4. NUMERICAL EXAMPLES 
 

In order to verify the proposed BE formulation, a computer program has been 

written using FORTRAN code. Three numerical examples are solved. Results of the 

first two examples are compared to the previously published results and the results of 

the third example are compared to analytical solution. 
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Fig. 4. Two interface surfaces discretized with the desired way using the developed BEPP. 

 

4.1 Square Loaded Area on Half Space with Two Different Soil Types 
 

In this example, a square area of dimensions (2m × 2m) over elastic half space 

with two different soil types is solved. The modulus of elasticity is 10,000 kN/m2 and 

2,000 kN/m2, respectively, and the Poisson’s ratios are equal to zero for the two soils 

as shown in Fig. 5. The interface plane is inclined by 45 with the horizontal surface. 

The loaded area is subjected to pressure equals to 100 kN/m2. 

This example is solved using the proposed BE technique and using the 

traditional 3D Finite Element Method (FEM). In the BE model, the size of element 

under the loaded area is 1m × 1m and the surrounding edge distance is 20m away from 

the end of loaded area with zero Dirichlet BC . Rigid layer is located at depth of 16m 

as shown in Fig. 6. 

In the FEM, three-different models are considered. Each model has different 

element size under the loaded area, that is: 1m × 1m, 0.5m × 0.5m, and 0.25m × 0.25m, 

respectively. All FE models have the same boundary conditions as those in BE model. 

In addition, the FE model 1m × 1m, discretization has the same boundary discretization 
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that in the BE model as illustrated in Fig. 6. The discretization has been doubled for the 

other FE models. The 3D FE used in these models is, eight-noded solid quadrilateral 

element. The results of the presented BE technique and the results of the FEM are 

compared to previous results [18, 19] as shown in Table1 and the errors have been 

computed relative to the results of these two references.  

It can be seen that, the present BE results are in very good agreement with 

previously published results and more accurate than those of the FEM results. In 

addition, it was difficult to use smaller element to (0.25m × 0.25m) in the used FEM 

because of the storage requirements.  

Fig. 5. Square loaded area on two different soils in example 4.1. 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Boundary element model for square loaded area on two different soils. 
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Table 1. Displacements (m) at the center and corners of square loaded area on elastic 

half space two different soils in example 4.1. 
 

[18] [19] 

Present 

BEM Mesh 

1m×1m 

3D FEM 

Mesh 

1m×1m 

3D FEM 

Mesh 

0.5m×0.5m 

3D FEM 

Mesh 

0.25m×0.25m 

Center (m) 0.0229 0.022428 0.02267 0.02097 0.021 0.0214 

Error, % [18]   1 % 8.5 % 8.3 % 6.55 % 

Error, % [19]   1.1 % 6.5 % 6.37 % 4.58 % 

Corners near 

interface, m 
0.011405 0.011216 0.01187 0.01086 0.01091 0.0105 

Error, % [18]   4.08 % 4.8 % 4.34 % 7.94 % 

Error, % [19]   5.8 % 3 % 2.55 % 6.38 % 

Other 

corners, m 
0.011233 0.011195 0.01142 0.01086 0.01088 0.0103 

Error, % [18]   1.7 % 4.8 % 3.14 % 8.3 % 

Error, % [19]   2 % 3 % 2.81 % 7.99  

 

4.2 Square Loaded Area on a Half Space with Three Different materials (Rock) 
 

In this example a square area of dimensions (2m×2m) is loaded over elastic half 

space with three different materials (Rock) as shown in Fig. 7. The modulus of 

elasticity is 20,000 MPa, 40,000 MPa, and 20,000 MPa, respectively. The Poisson’s 

ratios are equal to 0.3, 0.25, and 0.3, respectively. The two interface planes are 90 with 

the horizontal surface. The loaded area is subjected to pressure equals to 100 MPa. 

Fig. 7. Square loaded area on three different materials (Rock) in example 4.2. 

 

The BE model is generated by BEPP as shown in Fig. 8. The number of divisions 

under the loaded area is 16×16 and have been reduced in the far zones as shown in Fig. 
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8. The surrounding edge distance is 16m away from the end of loaded area with zero 

Dirichlet BC. Rigid layer is located at depth of 16m. 

Fig. 8. Boundary element model for the square loaded area in example 4.2. 

 

Figures 9 and 10 demonstrate displacements and stresses along horizontal strip 

under the loaded area respectively. It can been seen that, results are in a very good 

agreement with previously published results [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Displacements (Uz) along strip under the loaded area  

at y=0.5m and z=1m in example 4.2. 
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Fig. 10. Stresses (σzz) along strip under the loaded area at y=0.5m and z=1m in 

example 4.2. 

 

4.3 Square Loaded Area on a Homogenous Elastic Half Space  

 

In this example, a square loaded area of dimensions (2m×2m) over a 

homogenous elastic half space shown in Fig. 11 is solved. The modulus of elasticity 

and the Poisson’s ratio of the EHS are 10,000 kN/m2 and zero respectively. The loaded 

area is subjected to a uniform pressure equals to 100 kN/m2. 

 

Fig. 11. Square loaded area on a homogeneous elastic half space in example 4.2. 
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This example is solved using the proposed technique and using the traditional 

3D FEM. The BE model, is the same as in example 4.1 with the same discretization 

and BCs as shown in Fig. 6. 

In the FEM, three-different models are considered. Each model has a different 

mesh size, that is: medium, fine, and very fine. All FE models have the same boundary 

conditions as those in BE model. The FE model of very fine mesh size is illustrated in 

Fig. 12 where, ten nodes quadratic tetrahedral element is used. The results of the 

presented technique and the results of the FEM are compared to analytical solution [22] 

as shown in Table 2.  

 

Fig. 12. Finite element model for very fine meshing in example 4.3. 

 

It can be seen that, the present technique results are in excellent agreement with 

the analytical solution and more accurate than those of the FEM results with less 

computational effort. The deformed shape of the FE model of very fine mesh size is 

shown in Fig. 13. 
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Table 2. Displacements (m) at the center and corners of square loaded area on 

homogeneous elastic half space in example 4.3. 

 

Fig. 13. Deformed shape for the finite element model of very fine meshing in 

example 4.3. 

 

5. CONCLUSIONS 
 

In this paper, a new 3D boundary element technique is presented to analyze non-

homogeneous soil media. The soil media is divided into connected series of large sub-

regions and zero Dirichlet BCs are considered in the far zones. Each sub-region is 

solved in two steps; the first one is to get the region stiffness matrix. The second one is 

 Analytical 

Solution 

[22] 

Present 

Mesh 

1mx1m 

3D FEM 

Medium 

meshing 

3D FEM 

Fine 

meshing 

3D FEM 

Very fine 

meshing 

Center, m 0.022444 0.022238 0.01958 0.02109 0.02141 

Error, %   0.92% 12.76 % 6.03 % 4.61% 

Corners, m 0.011222 0.0111665 0.010223 0.01011 0.010106 

Error %   0.49 % 8.9 % 9.91 % 9.94 % 

Solution time, sec  42.87 255.45 530.53 1850.34 
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by postulating fixed interface nodes to compute the load vector at the interface nodes. 

The stiffness matrix and load vector at the interface nodes of all sub-regions are 

assembled. Hence, the overall system is solved to get the interface nodal displacements. 

Finally as a post-processing stage, each sub-region is re-solved again using the 

calculated region stiffness, and the computed interface nodal displacements to get the 

displacements and tractions at all region’s nodes. 

 A new 3D boundary element preprocessing program is developed in order to 

prepare all sub-regions, elements, and nodes relevant information in a different way 

from those used in open source FE based preprocessing programs. 

 Numerical examples are solved using the presented BE technique. The results 

of the presented technique demonstrated excellent agreement with the analytical 

solution, previously published results, and the traditional finite element method with 

less computational effort.  

The presented technique could be used as alternative to the traditional FEM to 

solve the overall problem of non-homogeneous soil or to be coupled with FEM to solve 

wide range of advanced engineering applications. In addition, the presented technique 

could be extended to solve plates over non-homogenous soil. As a future step, this 

formulation will be extended to treat non-linear soil applications. 
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ي فدددددددد    ددددددددددي  يتع يددددددددا الع دددددددددبال ال ح ددددددددرا  للمددددددددر   امدددددددد رر  الع دددددددددب  المطيدددددددد   ادللدددددددددل دددددددد  
ود ددددددله ا  الع دددددددب   ى ددددددب قددددددب ا  قدددددد   طددددددي  دددددد    الإزا دددددددل   دددددد  اقددددددد  ا للمددددددد   ددددددك  ال  ددددددد  

طشدددددددفب ال    دددددددي ال  قددددددد   اظددددددد ا ل   الإزا ددددددددل ال ح دددددددرا    ددددددد  اقدددددددد  ا للمدددددددد  الهد ددددددد  ودل   قددددددد
  دليدددد طحددددب  تاقدددد  ا الطدددد  ال حطرلدددد  ال  دددد  اللتدددد    ددددب   اددددداا للع كددددم قددددب ال يدادددددل ال زادددد   لط  دددد ل 

   قدددددددد    قددددددددئل    لددددددددد ا دددددددددوقد   ال لددددددددد ا ال  شددددددددرر اقدرادددددددد  ودل لددددددددد ا اللحطكطدددددددد  للأ ددددددددطري ال  ددددددددله   
 د بد ي ا ع ر    د ال  د   ال ح    اللقطك ي  
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