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ABSTRACT 
  

Ultimate bearing capacity of shallow foundations under axial vertical loads 

resting on strong cohesionless soil overlying weak deposit was investigated. Previous 

studies addressed simplified failure mechanisms and punching shear failure 

mechanism. In this paper, stress analysis using the limit equilibrium method was 

performed on an assumed failure plane, which is believed to be close to the observed 

failure plane from experimental investigation available in the literature. Furthermore, 

the footing will fail by punching of the upper layer through to the lower by a truncated 

column making an angle  with the vertical. The results showed that the ultimate 

bearing capacity of a footing on a strong sand layer overlying weak sand deposit 

depends on the relative shear strength of the two layers, footing geometry, embedment 

depth, and the thickness of the upper sand layer. The theoretical model developed was 

validated with the available experimental data in the literature, where good agreement 

was noted. 
 

KEYWORDS: Bearing capacity, Shallow foundations, Strong sand layer, Weak sand 

deposit, Limit equilibrium method of analysis. 
 

1. INTRODUCTION 
 

Foundation design necessitates that the ultimate bearing capacity of the soil is 

sufficient to support the proposed building, and that the settlement is within a tolerable 

limit. In the literature, the majority of the bearing capacity theories were developed for 

homogeneous soils, however, the ground is usually made of layered soils. Layered soil 
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profiles can be encountered in natural deposits or artificially made by adding a 

subgrade layer.  

Brown and Meyerhof were first to investigate footing on a stiff clay layer 

overlying a soft clay layer. They assumed that the footing fails by punching through 

the top layer [1]. 

Meyerhof conducted an experimental investigation on the strip and circular 

footings on sand overlying clay: dense sand overlying soft clay and loose sand 

overlying stiff clay. The theories developed were validated with the experimental 

results obtained [2]. 

Meyerhof and Hanna conducted experimental and analytical investigations on 

footings on a strong layer overlying weak deposit and a weak layer overlying strong 

deposit. The theories developed compared well with the experimental data. The 

theories predict bearing capacity of these footings under vertical and inclined load [3].  

Hanna and Meyerhof extended their theory of the ultimate bearing capacity of 

two-layer soils to the case of three-layer soils [4]. Pfeifle and Das conducted an 

experimental investigation. The results compared well with the predicted values of 

Meyerhof [2, 5]. 

Hanna extended the theory to cover the case of footings resting on subsoil 

consisting of a strong sand layer overlying weak sand deposit [6]. 

Madhav and Sharma developed a formula for the ultimate bearing capacity of 

footings resting on a sand layer over a soft clay layer using the punching shear 

mechanism developed by Meyerhof and Hanna [3, 7].   

Radoslaw Et Al. used the kinematics approach of limit analysis to calculate 

average limit pressure under footings to predict the bearing capacity of footings resting 

on two-layer soil [8].  

Kumar and Chakrborty investigated the bearing capacity of a circular footing on 

sand layer overlying cohesive deposit using the axisymmetric lower bound limit 

analysis together with finite elements and linear optimization. They reported that a 

certain optimum thickness of the sand layer exists beyond which no further 

improvement occurs [9].  
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Mosallanezhad and Moayedi conducted a comparative analysis of methods 

developed to predict bearing capacity of footing on layered soils, to include; 

experimental investigations, analytical models using limit equilibrium, and numerical 

models using finite element analyses. It was concluded that there are a number of 

factors influencing the bearing capacity of the soil, such as soil layer thickness, soil 

properties, applied stress, and the method of analysis [10].  

Tang and Phoone compiled 159 centrifuge test results for footing on sand 

overlying clay deposit where punch-through the upper layer was observed [11].  

Eshkevari Et Al. investigated the case of strip footings resting on a relatively 

thin layer of dense sand overlying a weaker sand layer. Finite Element Analysis was 

employed to calculate failure load and to identify the geometry of the failure 

mechanism [12]. In another study, an estimation of the undrained bearing capacity of a 

rigid strip footing on sand layer of finite thickness overlying clay deposit, using finite 

element limit analysis was carried out. The rigorous upper and lower bound theorems 

of plasticity were employed to bracket the bearing capacity of the footing, and to 

identify the geometry of failure mechanisms [13]. 

 

2. ANALYTICAL MODEL 
 

The case of a shallow footings on a strong sand layer overlying a weak sand 

deposit subjected to vertical load was considered. It was reported that the footing is 

punching in a roughly truncated parabolic shape into the lower sand layer [14]. In this 

analysis, the failure mechanism was idealized as a truncated column punching through 

the upper layer to the lower layer using the limit equilibrium method of analysis. 

Figure 1 presents the considered strip footing having a width, B and depth D, resting 

on dense sand layer overlying loose sand deposit. The thickness of the upper sand 

layer is H below the footing base. The unit weight and angle of shearing resistance of 

the upper and lower sand layers are 1, 1 and 2, 2, respectively.  
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Fig. 1. Punching shear mechanism of a strip footing on dense sand overlying loose 

sand deposit. 
 

Figure 2 presents a horizontal strip at a depth z from the founding level having 

a thickness dz. The strip is subjected to a passive earth pressure Pp, acting on the 

failure plane at an average angle  upwards, and vertical stress (zz) acting on the top 

of the strip, the vertical stress (zz+dzz) acting upward on the bottom of the strip, and 

the weight of the slice, W. 

 

 

Fig. 2. Forces acting on a strip dz of the failure zone at depth z. 
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Where:  

zz : Vertical stress acting on the top of the slice. 

zz + dzz: Vertical stress acting upward on the bottom of slice. 

B : Width of the footing. 

D : Embedment depth of the footing.  

Z : Depth of the slice from the founding level.  

 : Angle of the assumed failure plane with the vertical. 

 : Mobilized angle of shearing resistance on the assumed failure plane. 

1 : Unit weight of the upper sand layer.   

Kp : Coefficient of passive earth pressure given by Caquot and Kerisel [15]. 

dPp : Passive earth pressure, acting on the sides of the punching slice: 

𝑑𝑃𝑝 =  𝛾1 (𝐷 + 𝑧 +  
𝑑𝑧

2
) 𝐾𝑝 (1) 

Employing the limit equilibrium technique of the vertical forces, Eq. (2) 

equation is obtained as 

𝜎𝑧𝑧(𝐵 + 2𝑧 tan 𝛼) − (𝜎𝑧𝑧 + 𝑑𝜎𝑧𝑧) ∗ [𝐵 + 2(𝑧 + 𝑑𝑧) tan 𝛼] − 2 𝑑𝑃𝑃𝑣 𝑑𝑧

+  𝛾1 (𝐵 + 2(𝑧 + 
𝑑z

2
)tan 𝛼) 𝑑𝑧 = 0 

(2) 

Simplification of Eq. (2), gives Eq. (3) in the form 

− 𝜎𝑧𝑧(2𝑑𝑧 tan 𝛼) − 𝑑𝜎𝑧𝑧 ∗ [𝐵 + 2(𝑧 + 𝑑𝑧) tan 𝛼] − 2𝑑𝑃𝑝𝑣
𝑑𝑧 +  𝛾1 (𝐵 +

2(𝑧 + 
𝑑𝑧

2
)tan 𝛼) 𝑑𝑧 = 0 

(3) 

The value of  𝜎𝑧𝑧(2𝑑𝑧 tan 𝛼) is too small and can be reasonably assumed to be equal 

to zero. Thus Eq. (3) can be written as 

−𝑑𝜎𝑧𝑧[𝐵 + 2(𝑧 + 𝑑𝑧)tan 𝛼] − 2𝑑𝑃𝑝𝑣
𝑑𝑧 +  𝛾1 (𝐵 + 2(𝑧 + 

𝑑z

2
)tan 𝛼) 𝑑𝑧 =0  (4) 

𝑑𝜎𝑧𝑧[𝐵 + 2(𝑧 + 𝑑𝑧)tan 𝛼]

= −2 [𝛾1𝑘𝑝 (𝐷 + 𝑧 +
𝑑𝑧

2
 )] sin 𝛿  𝑑𝑧 + 𝛾1[𝐵 + 2 (𝑧 +

𝑑𝑧

2
) tan 𝛼]𝑑𝑧 

(5) 
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Multiplying and rearranging the factors in Eq. (5), the following can be produced:  

𝑑𝜎𝑧𝑧(𝐵 + 2(𝑧 + 𝑑𝑧)tan 𝛼) = −2𝛾1𝐾𝑝𝐷 𝑠𝑖𝑛𝛿 𝑑𝑧 − 2𝛾1𝐾𝑝𝑧 𝑠𝑖𝑛𝛿 𝑑𝑧 −

𝛾1𝐾𝑝 𝑠𝑖𝑛𝛿 𝑑𝑧 𝑑𝑧 +  𝛾1 (𝐵 + 2 (𝑧 +
𝑑𝑧

2
) tan 𝛼)  𝑑𝑧  

(6) 

The following components of Eq. (6) are too small and can be neglected: 

𝛾1𝐾𝑝 𝑠𝑖𝑛𝛿 𝑑𝑧 𝑑𝑧,  𝛾1
𝑑𝑧

2
tan 𝛼 , 𝑎𝑛𝑑 2𝑑𝑧 tan 𝛼 =  0  (7) 

Thus Eq. (6) can be written as  

 𝑑𝜎𝑧𝑧 = −
2𝛾1𝐾𝑝𝐷 𝑠𝑖𝑛𝛿 

𝐵+2𝑧 tan 𝛼
𝑑𝑧 +

−2𝛾1𝐾𝑝 𝑠𝑖𝑛𝛿 

𝐵+2𝑧 tan 𝛼
𝑧𝑑𝑧 + 𝛾1𝑑𝑧  (8) 

Integrating Eq. (8) gives 

∫ 𝑑𝜎𝑧𝑧 = ∫ −
2𝛾1𝐾𝑝𝐷 𝑠𝑖𝑛𝛿 

𝐵+2𝑧 tan 𝛼
𝑑𝑧 + ∫

−2𝛾1𝐾𝑝 𝑠𝑖𝑛𝛿 

𝐵+2𝑧 tan 𝛼
𝑧𝑑𝑧 +  ∫ 𝛾1 𝑑𝑧  (9) 

𝐿𝑒𝑡 𝐴1 = − 2𝛾1𝐾𝑝𝐷 𝑠𝑖𝑛𝛿  (10) 

𝑎𝑛𝑑 𝐴2 = − 2𝛾1𝐾𝑝 𝑠𝑖𝑛𝛿 (11) 

𝜎𝑧𝑧 = ∫
𝐴1 𝑑𝑧

𝐵+2𝑧 tan 𝛼
+ ∫

𝐴2 𝑧𝑑𝑧

𝐵+2𝑧 tan 𝛼
+  ∫ 𝛾1 𝑑𝑧  (12) 

(I) (II) (III) 

 

The stress zz is the sum of the three integrals I, II, and III, which can be solved 

separately as follows: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝐼):             𝐴1 ∫
 𝑑𝑧

𝐵 + 2𝑧 tan 𝛼
 (13) 

In order to solve this integral let tan2zBu  , then dzdu  tan2 , and
tan2

du
dz    

Substitute the value of dz, and then integral (I) can be written as 

𝐴1 ∫
 𝑑𝑢

2 tan 𝛼

1

𝑢
=  

𝐴1

2 tan 𝛼
ln 𝑢 + 𝑐 =  

𝐴1

2 tan 𝛼
 (ln(𝐵 + 2𝑧 tan 𝛼)) +  𝑐 (14) 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝐼𝐼):    ∫
 𝐴2 𝑧 𝑑𝑧

𝐵 + 2𝑧 tan 𝛼
                                                                    

=  
𝐴2

(2 tan 𝛼)2
[𝐵 + 2𝑧𝑡𝑎𝑛 𝛼 − 𝐵(ln(𝐵 + 2𝑧 𝑡𝑎𝑛 𝛼))] + 𝑐 

(15) 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝐼𝐼𝐼):  ∫ 𝛾1  𝑑𝑧 =  𝛾1𝑧 + 𝑐 (16) 

Where: c is a constant. 
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Substituting Eqs. (14-16) in Eq. (12), the following equation can be written: 

                   𝜎𝑧𝑧 =
− 𝛾1 𝐾𝑝 𝐷 sin 𝛿

tan 𝛼
ln(𝐵 + 2𝑧 tan 𝛼)

+  
−2 𝛾1𝐾𝑝 sin 𝛿

(2 tan 𝛼)2
[𝐵 + 2𝑧 tan 𝛼 − 𝐵 ln(𝐵 + 2𝑧 tan 𝛼)] +  𝛾1 +  𝑐  

(17) 

 

In order to determine the value of the constant c, the following boundary 

conditions were considered: z varies from 0 to H, where H is the depth of the upper 

layer below the footing base. At z = 0 (the slice is just below the footing) the stress zz 

= qu, and Eq. (17) can be written as 

𝑞𝑢 =
𝐴1

2 tan 𝛼
ln(𝐵) + 

𝐴2

(2 tan 𝛼)2
(𝐵 − 𝐵 ln(𝐵)) + 𝑐 (18) 

Where: qu is the ultimate bearing capacity of the footing on two-layered soil. 

Replacing 1A  and 2A  by their values;  

𝑞𝑢 =
− 𝛾1  𝐾𝑝 𝐷 sin 𝛿  

tan 𝛼
ln(𝐵) − 

𝛾1  𝐾𝑝 sin 𝛿

(2 tan 𝛼)2
∗ 𝐵(1 − ln 𝐵) + 𝑐 (19) 

The value of the constant c can be calculated as 

𝑐 = 𝑞𝑢 +  
 𝛾1  𝐾𝑝 sin 𝛿  

tan 𝛼
∗ [ 𝐷 ln 𝐵 +  

𝐵(1 − ln 𝐵)

2 𝑡𝑎𝑛𝛼
] (20) 

Refer to Fig. (2), at z = H; (interface slice), the stress zz = qb   

Where: qb is the ultimate bearing capacity of the footing on a thick bed of the 

lower layer; qb can be evaluated as 

𝑞𝑏 =  
1

2
 𝛾2𝐵 𝑁𝛾2

+  𝛾1(𝐻 + 𝐷)𝑁𝑞2
          (for sand layer)      (21) 

𝑞𝑏 =  𝐶𝑢 𝑁𝑐2
+  𝛾1(𝐻 + 𝐷)                     (for clay layer)      (22) 

Where:  

N2, Nq2, and Nc2 are the bearing capacity factors for strip footings resting on a thick 

bed of the lower layer (weak sand deposit). 

Replacing z with H and zz with qb, the following equation can be obtained.  

𝜎𝑧𝑧 =  
𝐴1

2 tan 𝛼
ln(𝐵 + 2𝐻 𝑡𝑎𝑛 𝛼) +  

𝐴2

(2 tan 𝛼)2
 [𝐵

+ 2𝐻 tan 𝛼 − 𝐵 ln(𝐵 + 2𝐻 tan 𝛼)] +  𝛾1 𝐻 +  𝑐 

(23) 

Substituting the values of 1A , 2A and c in Eq. (23) gives 
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𝑞𝑏 =  
−2𝛾1  𝐾𝑝 𝐷 𝑠𝑖𝑛𝛿

2 tan 𝛼
ln(𝐵 + 2𝐻 tan 𝛼) + 

−2 𝛾1 𝐾𝑝 sin 𝛿

(2 tan 𝛼)2
[𝐵 + 2𝐻 tan 𝛼 − 𝐵 ln (𝐵

+ 2𝐻 tan 𝛼)] +  𝛾1𝐻 + 𝑞𝑢 +
 𝛾1 𝐾𝑝 sin 𝛿

tan 𝛼
[𝐷 ln 𝐵 +

𝐵 (1 − ln 𝐵)

2 tan 𝛼
] 

(24) 

Rearranging and simplifying Eq. (24) gives 

𝑞𝑢 =  𝑞𝑏 − 𝛾1 𝐻              

+
𝛾1  𝐾𝑝 𝐷 𝑠𝑖𝑛𝛿

tan 𝛼
 [ln(𝐵 + 2𝐻 tan 𝛼) − ln 𝐵] +  

 𝛾1 𝐾𝑝 sin 𝛿

(2 tan 𝛼)2
[𝐵 + 2𝐻 tan 𝛼

− 𝐵 ln (𝐵 + 2𝐻 tan 𝛼) − 𝐵 +  𝐵 ln 𝐵] 

(25) 

Assuming that F = ln(𝐵 + 2𝐻 𝑡𝑎𝑛 𝛼) − ln 𝐵 = ln[
𝐵 + 2𝐻 tan 𝛼

𝐵
] (26) 

After simplification, Eq. (25) can be written as 

𝑞𝑢 = 𝑞𝑏 −  𝛾1𝐻 +
𝛾1  𝐾𝑝 𝑠𝑖𝑛𝛿

tan 𝛼
 [𝐷𝐹 +  

2𝐻 tan 𝛼 −  𝐵𝐹 

2 tan 𝛼
] (27) 

Or in a dimensionless form by dividing both sides by B1  as 

𝑞𝑢

𝛾1𝐵
=  

𝑞𝑏

𝛾1𝐵
+

𝐾𝑝 𝑠𝑖𝑛𝛿

tan 𝛼
 [

𝐷𝐹

𝐵
+

𝐻

𝐵
− 

𝐹

2 tan 𝛼
] −  

𝐻

𝐵
 (28) 

The parameters used in Eq. (28) were described above. Kp is the coefficient of 

passive earth pressure for the upper sand layer, is taken from Caquot and Kerisel [15], 

which depends on the angle of shearing resistance 1 and the ratio /1, where the 

angle  is the mobilized angle of shearing resistance on the assumed failure planes. 

The following arguments are considered:  

1- If the analysis were made on actual failure planes, the angle will be equal to 1, 

if however, the analysis is made on assumed failure planes, the angle , mobilized 

on the assumed failure planes is used, which is less than 1 , as failure has not yet 

taken place on this plane. 

2- The assumed failure planes are considered the best-fit straight line to the actual 

failure planes.  

3- The angle  varies with the depth of the upper layer, which decreases as the 

assumed failure planes deviate from the actual failure plane (curved). Thus the 

angle  will be equal to 1 when both the assumed and the actual failure planes 

coincide with each other. 
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In this analysis, the ratio (/1) will be assumed as 0.9. This is justified as the 

assumed failure plane is the best-fit line to the actual curved one.  

The non-dimensional ratio 
𝑞𝑏

 𝛾1𝐵
  can be written as 

𝑞𝑏

𝛾1𝐵
=  

1

2

𝛾2

𝛾1
𝑁𝛾2 +  

𝐻 + 𝐷

𝐵
𝑁𝑞2 (29) 

In order to determine the angle , the experimental data reported by Hanna 

given in Table 1 were employed [6]. The deduced angles  are given in Table 2 and 

presented in Fig. 3.  

Accordingly, the values of the angle  shown in Fig. 3 are only valid within the 

range of H/B = 0.5 to 4.5, then the predicted values will be in agreement with the 

experimental results presented in this paper and the data available in the literature. 

The ratio q2/q1 varies between 0 and 1, since the case of a strong upper layer 

overlying a weak deposit is considered in this study. A value of q2/q1 equal to 1 refers 

to the homogenous case, where according to Terzaghi [16], the failure below the 

footing occurs with an angle a equal to (45 +1/2) with the vertical.  

For the given experimental data shown in Table 1: 

𝑞2

𝑞1

=  
𝛾2 

𝛾1

𝑁𝛾2

𝑁𝛾1

=
13.8 ∗ 41.06

16.3 ∗ 468.3
= 0.074 (30) 

Where: 

q2: ultimate bearing capacity of footing resting on a very thick bed of layer 2.  

q1: ultimate bearing capacity of footing resting on a very thick bed of layer 1. 

 

Table 1. Soil properties used in experimental investigation [6]. 

Top Layer (Strong Sand) Bottom Layer (Weak Sand) 

1 = 47.7 degrees 2 = 34.0 degrees 

1 = 16.3 kN/m3 2 = 13.8 kN/m3 

N1  = 468.3 N2  = 41.06 

Nq1 = 211.8 Nq2 = 29.44 

 

 



A. HANNA ET AL 

1408 

Table 2. Deduced angle  from the experimental results reported [6]. 

Experimental Data Calculated Angle 

(degrees) D/B H/B qu (kN/m2) 

0.0 

1.0  

2.0  

3.0 120.94 62.2 

4.5 231.74 40.1 

5.0 237.88 46.6 

0.50 

0.5 36.27 89.0 

2.0 101.43 71.5 

3.0 170.03 52.4 

4.5 303.45 34.6 

5.0 323.86 36.9 

1.0 

0.5 48.40 89.0 

1.5 99.84 77.0 

3.0 219.61 47.1 

4.5 391.77 28.7 

5.0 412.46 31.2 

 

 

Fig. 3. Deduced angle   vs. H/B for different D/B ratios, from the experimental 

results of Hanna [6]. 
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3. Considerations for the Angle    
 

The first step towards predicting the behavior of the angle  is to determine the 

parameters on which it depends, which are as follows: 

1- The ratio H/B (depth of the upper sand layer over the footing's width). 

2- The ratio q2/ql (ultimate bearing capacity of the lower layer over the ultimate 

bearing capacity of the upper layer taken as homogenous) 

3- The angle of shearing resistance of the upper sand layer 1. 

4- The ratio /1 (the mobilized angle of shearing resistance on the assumed failure 

planes   over the angle of shearing resistance of the upper sand layer 1). 

5- The ratio D/B (depth of the footing in the upper sand layer over the footing's 

width). 

 Three trials were reported by Abou Farah to predict the angle  by assuming a 

certain function for the angle  while the rest of the parameters were varied in order to 

calculate the ratio /1, which varies between 0 and 1 [14]. 

 Also, the ratio q2/q1 varies between 0 and 1 for the case of strong upper layer 

overlying weak deposit. A value of q2/q1 equals to 1 refers to the homogenous case, 

where according to Terzaghi, the failure occurs with an angle  equal to (45 + 1/2) 

with the vertical [16].

A value of q2/q1 equal to 0 refers to either case scenario, q2 tends to zero or q1 

tends to ∞. In the first scenario, if the upper layer is overlying a fluid, the punching 

occurs rapidly and vertically, and the corresponding angle  equals to zero. In the 

second scenario, if the footing is lying on a very strong upper layer, like rock or 

concrete, there will be no punching, and at ultimate load failure occurs horizontally in 

the upper strong layer, and the angle  tends to 90°. 

 The first trial assumed that the angle  is a function of the ratio q2/q1 with a 

parabolic equation. By using the available experimental data and back calculating the 

ratio /1. The deduced values of the ratio /1 were not consistent with the condition 

that it lies between 0 and 1. Therefore, the assumed parabolic equation of the angle  

is not valid. 
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 The second trial assumed that the angle  is a straight line, assuming that the 

angle  is equal to 0 for q2/q1= 0 and equal to (45 + 1/2) for q2/q1= 1. Calculating the 

angle  using the available experimental data and by back calculating the ratio /1 , 

the deduced values for the ratio/1 were not consistent with the condition that it 

should be between 0 and 1, accordingly the assumed function is also not valid. 

 The third and the last trial takes into consideration all parameters involved and 

gives a series of equations to calculate the angle Assuming that the ratio /1 is 

equal to 0.90 (constant), the equation for the angle  has the following form: 

 =   ln (qq (31) 

Where: 

   : Function of the ratios H/B and D/B 

   : Function of the angle of shearing resistance of the upper layer 1, 

     = 45 + 1/2 

The equation for  is a straight line with the ratio H/B and may be expressed as 

= (HB (32) 

Where the constants  and  are determined according to the back calculations, and 

their values are presented in Table 3. 

Table 3. Values for the constants  and   

D/B  

0 4.108 -9.159 

0.50 4.577 -9.420 

1.00 4.513 -9.960 

Detailed calculations can be found in Abou Farah [14]. 

 

4. VALIDATION OF THE PRPOSED BEARING CAPACITY EQUATION  
 

The theory developed in this paper was validated with the experimental results 

of Hanna [6]. It can be noted that a good agreement was obtained for lower values of 

H/B as the system acts as a two-layer system, while for higher values of H/B the 

system tends to function as footing on homogeneous upper layer sand. Figures 4-6 
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present the comparison between theoretical and experimental results for the cases 

D/B=0, 0.5, and 1.0 respectively. 

 

Fig. 4. Comparison of theoretical values of qu at D/B=0 with experimental results of 

Hanna [6]. 

 

Fig. 5. Comparison of theoretical values of qu at D/B=0.50 with experimental results of 

Hanna [6]. 
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Fig. 6. Comparison of theoretical values of qu at D/B=1 with experimental results of 

Hanna [6]. 
 

 

 

5. CONCLUSIONS 
 

The case of footing on strong sand layer overlying a weak sand deposit was 

investigated. The following conclusions are obtained: 

1. Stress analysis was performed on an assumed failure mechanism. In this analysis, 

the mobilization shear strength on the failure planes was considered.  

2. A design formula was developed to predict the bearing capacity as a function of the 

shear strength of the upper and lower layers, the footing depth/width ratio and the 

measured angle of the failure plane with respect to the vertical.  

3. The predicted values of the bearing capacity using the proposed formula compared 

well with the experimental data presented by Hanna [6]. 

4. The comparison between theoretical and experimental values of the bearing 

capacity were varied between 1% and 13% for lower values of H/B, and it reaches 

17% for values of the ratio H/B of 4.5 and 5, where the homogeneous case prevails 

as presented in Figs 4-6.  
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 طبقة رمل ضعيفةالاساسات الضحلة المرتكزة على طبقة رمل قوية تعلو 
 يدرس البحث قدرة التحمل القصوى للأساسات الضحلة المعرضة للأحمال الراسية المحورية
المرتكزة على تربة مكونة من طبقة رمل قوية تعلو طبقة رمل ضعيفة، وقد استخدمت الدراسات السابقة 

الحالي تم تحليل الاجهادات القص الاختراقي اما في البحث  انهياراليات مبسطة لشكل الانهيار والية 
بطريقة التوازن الحدي على منحنى الانهيار المفترض والذي يعتقد أنه قريب من منحنى الانهيار الملاحظ 
في الاختبارات المعملية بالإضافة أن الاساس سوف ينهار عن طريق اختراق طبقة التربة العلوية من 

اوية )الفا( مع الرأسي، وتظهر النتائج أن قدرة خلال الطبقة السفلية على شكل عمود مقطوع يصنع ز 
التحمل القصوى للأساس المرتكز على طبقة رمل قوية تعلو طبقة رمل ضعيفة تعتمد على الاجهاد 

بمقارنة سمك طبقة الرمل العلوية، و الهندسية للاساس وعمق التأسيس و  النسبي للطبقتين والخصائص
 معملية منشورة سابقا تبين وجود تتطابق بينهما بصورة جيدة. نتائج النموذج النظري بنتائج اختبارات


