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ABSTRACT 
 

This paper is a pioneering step to furnish the theoretical basis behind the semi-

empirical punching formula. Principles of the Boundary Element Method BEM and 

the theory of elasticity are adopted to establish the rationale behind the punching shear 

stress equation proposed in building codes. It was found that an envelope could be 

constructed between the theoretical shear stresses in the two directions embracing safe 

punching values computed from ACI empirical formula. The present research further 

substantiates this effort through developing a BEM-based checking methodology for 

punching limit state for columns of any irregular cross-section shape – a task that 

traditional punching equations fall short of satisfying. This methodology is first 

verified via regular shape columns then adopted to demonstrate its capability to 

consider columns with irregular cross sections. Finally, some real-world examples are 

conducted to demonstrate the accuracy, efficiency, practicality and reliability of the 

proposed computational “theoretically-based” methodology in checking punching of 

reinforced concrete columns with arbitrary (either regular or irregular) cross-sections. 
 

KEYWORDS: Boundary element method, punching columns, irregular cross section.  
 

1. INTRODUCTION 
 

Check of safety against punching is an essential part of reinforced concrete flat 

slab design procedure. The study of unbalanced moment under vertical loading at slab 

column connections was thoroughly investigated in many research works and then 

implemented into code provisions for punching safety. Design codes evaluate the 

influence of shear forces and bending moments acting in slab section within the 

column support area on the punching shear strength [1-4]. 
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A number of experimental and numerical investigations were also carried out in 

the literature in order to improve design codes provisions for punching shear 

calculations. 

They suggested the evaluation of some factors which have an influence on 

punching shear behavior and accordingly affect punching failure mode. Some 

researchers carried out experimental investigations [5-7]. They presented their 

conclusion in a useful format permitting codes to specify some critical section 

locations for checking punching. 

On the other side, many important researches focused on punching analysis 

using numerical methods. For instance, the effect of a concentrated moment was 

investgated applied to an uncracked elastic plate at an interior column neglecting the 

local influence of the column cross-section shape and focused on obtaining the 

distribution profile/contour for the shear and moments around any closed perimeter 

[8], this solution for the closed sections was based on the Levi’s solution for plates. 

Later, unbalanced moment transfer parameters was computed namely, γv percentage of 

moment transferred by shear forces and γf percentage of moment transferred by 

bending and twisting moments using Finite Element Method FEM [9] and compared 

their results against those given by ACI 318-89 building code procedure/equations. 

Another approach was introduced for computing the punching parameters γv and γf at 

any slab-column connection using the Boundary Element Method BEM via the shear 

deformable plate bending theory [10] and compared their results against those given 

by ACI 318 equations and [9] results that were based on FEM. 

The focus of the present paper is to identify the rationale behind the punching 

formula without loosing generality in this work, only the ACI 318 formula is 

considered. Towards this goal, presented research proposes substituting the ad-hoc 

“single-valued” shear stress    at a given point on the critical section for punching by 

the actual theoretical “two-component” shear stresses as retrieved from the theory of 

elasticity'' qx and qy''. A BEM-based software is then devised implementing relevant 

principles of the theory of elasticity in order to draw an envelope for punching strength 

along the critical section for reinforced concrete columns with irregular cross section 



THEORETICAL ENVELOP FOR THE PUNCHING SHEAR FORMULA 

93 

shapes – an application that ACI 318 is unable to address except with some user-

assumed regularization of the irregular cross section. 

 

2. SHEAR CALCULATION IN THE THEORY OF PLATES 
 

The application of boundary element method BEM in shear deformable plates 

was firstly studied [11]. Later, the work was extended by considering internal columns 

terms to be added to the main governing integral equation [12]. The main purpose of 

employing the BEM with the shear deformable plate theory is its capability to compute 

value of shear in Mu at the vicinity of columns which usually has high values of stress 

concentrates. 

Consider an arbitrary plate of domain Ω and boundary Γ, loaded by domain 

loading of intensity q as shown in Fig. 1. Internal columns and walls are modeled 

using internal supporting cells with the real geometry of their cross sections. Three 

generalized forces are considered at each internal support: two bending moments in 

two orthogonal directions as well as shear force in the vertical direction. These 

generalized forces are considered to vary constantly over the column cross-section. 

The plate bending theory [13] is used in the formulation of the direct boundary integral 

equation of the plate. This integral equation can be presented as follows [12-14]:   
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where Tij(ξ,x), Uij(ξ,x) are the two-point fundamental solution kernels for 

tractions and displacements, respectively [11]. The two points ξ and x are the source 

and the field points, respectively. uj(x) and tj(x) denote the boundary generalized 

displacements and tractions. Cij(ξ) is the jump term. The symbols ν and λ denote the 

plate Poisson's ratio and shear factor. The symbol c denotes the number of internal 

columns that have domain Ωc. Fk represents the column two bending moments and 
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vertical force (Mux, Muy, F). The field point y denotes the point of the internal column 

center.  

Fig. 1. The boundary element model of general flat plate supported on columns. 

 

Equation (1) represents three integral equations. If the slab boundary is 

discretized into quadratic elements (three nodes per element), another collocation 

scheme has to be hence carried out at each “column” center to add more equations as 

follows: 
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where, Y represents a point at each “column” center as shown in Fig.1. 
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Both Eqs. (1-2) could be used to solve the problem and obtain the unknown 

boundary generalized tractions or displacements. 

Internal values at any internal point  can be computed as a post-processing 

stage. For example, displacements at internal points can be computed using Eq. (1) 

with Cij(ξ)=ij the identity matrix; whereas straining action values (bending and 

twisting moments Mαβ as well as shear forces Q3β) can be computed using other 

integral Eq. [12]: 
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The shear stress at the internal point ( ) are obtained as follows [12]: 
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The relevant new kernel Uijk, Tijk and Wiβ and their relevant derivatives are 

determined in the literature [12]. It has to be noted that all kernels at internal points are 

smooth, and could be straightforwardly computed even over column centers. It can be 

seen from Eq. (4) that at each internal point ( ξ ) there are two values of the shear 

forces, i.e. 
31Q =qx and

32Q =qy. 

 

3. CODE-SPECIFIED SHEAR STRESS VERSUS THE THEORY OF 

ELASTICITY SHEAR STRESSES 
 

This section is dedicated to establish a relationship between the “two” 

components of vertical shear stresses, qx and qy obtained from Eq. (4), retrieved at 
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each point from applying the boundary element method and the “single-valued” shear 

stress,   , retrieved through applying the punching Eq. [1]. 

                                                 
  
  

 
       

  
  

      

  
                                                   

where    is the value of the direct shear;          are the values of the unbalanced 

column moments about the center of geometry of the critical section;     is the area of 

concrete of an assumed critical section equal to d multiplied by the perimeter of the 

assumed section, with d being the effective slab depth;     and     are fractions of 

moment considered to be transferred by eccentricity of shear;  and   are coordinates 

of the point at which   is calculated;    and    are second moments of area of the 

critical section. 

The analytical verification procedure illustrated herein entails solving many 

case-study problems under various loading schemes using the BEM, and obtaining qx 

and qy values by Eq. (4) at the four corners of the critical section around the internal 

rectangular column under consideration as described in Fig. 2.The process continues 

by plotting the retrieved pairs of qx and qy reported at each corner as single dots such 

as shown in Fig. 2. Hence,   as per Eq. (5) is computed at the same four corners of the 

critical section of the column considered and is compared to the shear strength of 

concrete (qup) [1]. If the code-computed value of   at any point of the four corners of 

the critical section is found to be safe from a design perspective i.e., its value is less 

than the shear strength of concrete the BEM retrieved qx-qy pair computed at the same 

corner of the critical section and represented by a single dot in Fig. 2 is drawn as a 

white circle. Conversely, if the code-computed value of   does not satisfy the shear 

strength of concrete at any point of the four corners of the critical section, the BEM 

retrieved qx-qy pair computed at the same corner and represented by a single dot in Fig. 

2 is drawn as a black dot. 
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Fig. 2. Computed values of qx,qy retrieved using BEM and    determined as per Eq. (5) 

 at corners of critical section of an internal rectangular column. 

 

The diagram shown in Fig. 3, depicting the interaction – if any – between the 

two components of shear stresses qx and qy computed through BEM and their 

association to the single-valued codified   as per Eq. (5) turns out to be a perfect 

square in shape with its four sides marking the shear strength of concrete. The direct 

conclusion from Fig. 3, is that there is no interaction between the elasticity-based two 

components of the shear stresses qx and qy at a given point retrieved from BEM, and 

accordingly, when both qx and qy have values less than the codified shear strength of 

concrete the punching check is satisfied. And conversely, if either qx or qy exceeds the 

concrete shear strength, punching check is violated. The theoretically-based shear state 

of stresses computed using the BEM and theory of elasticity is hence compatible with 

the single-valued semi-empirical shear stress resulting from applying Eq. (5). 

It is worth noting that along the boundary of the envelop represented in Fig. 3, 

separating the white circle i.e., satisfying concrete shear strength from the black i.e., 

not satisfying concrete shear strength dots – the larger of qx and qy is equal to the shear 

strength of concrete. The proposed technique is hence implemented into a BEM-based 

software in order to check punching directly and accurately for design purposes after 

proving that the technique is compatible with the results obtained from the semi-

empirical Eq. (5) for checking punching. This theoretically-based technique promoted 

in the present research could further precisely handle columns with irregular cross-

sections which Eq. (5) could not satisfactorily consider. 
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 Fig. 3. The relation between qx and qy retrieved using BEM and the single-valued 

shear stress   determined as per Eq. (5). 
 

4. PROPOSED PUNCHING CHECK TECHNIQUE AND VERIFICATIONS  
 

The solution procedures in Eqs. (1-4) have been implemented into computer 

code that allows computing the qx & qy according to Eq. (4) at series of points in the 

vicinity of the punching area around columns. 

The user suggests the critical section according to any specific building code 

guidelines [2-4]. 

Hence values of shear stress results qx & qy are computed from Eq. (4). 

The problem shown in Fig. 4, is considered. It consists of a square flat slab of 

two continuous spans [10m] each. The slab thickness (t) is [0.22m] with an effective 
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depth (d) assumed as 0.65 [0.20m]. Young’s modulus for concrete (E) is [2.1×10
6
 

t/m
2
]. The cross section dimensions of the column under consideration (C1) are [1m

1m] and its height is [3m]. The cross section dimensions of the other (corner and edge) 

columns are [0.6m 0.6m]. 

 

Fig. 4. A typical generic flat slab scheme supported on columns. 

The building consists of 10 stories and the check of punching is conducted at 

the first story level. The building is subjected to eccentric lateral forces (Fx and Fy) 

applied at the lower left corner of the floor plan/footprint at the tenth floor i.e., at 

the roof level. 
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The critical section for punching is assumed at a distance d/2 from the face of 

the column. The punching check has been conducted for column (C1) Fig. 4, for a 

series of various permutations of magnitudes and directions of loading. Results are 

demonstrated in the Table 1 for the different loading schemes.  

It can be seen from Table 1 that results retrieved from the proposed 

technique Eq.(4) for theoretically computed shear stress components qx & qy are 

compatible to those determined from Eq. (5) which verifies the developed code 

and the technique as well.  

 

Table1. Results for checking punching stresses at critical section of the internal 

column C1 black dots mean punching takes place at this location  

while white circles mean no punching risk. 

Proposed technique Building code Eq. (5) Type of load Case no. 

 

Unsafe 

 

Unsafe 

Fx=1000 t 

Fy= 1500 t 

 

 

1 
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Table1, Continued 

Proposed technique Building code Eq. (5) Type of load Case no. 

 

Safe 

 

Safe 

Fx=500 t 

Fy = 500 t 

 

 

2 

 

Safe 

 

Safe 

Fx=200 t 

Fy=200 t 

 

3 

 

Safe 

 

Safe 

Fx=1000 t 

Fy=1000 t 

 

4 
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Table1, Continued 

Proposed technique Building code Eq. (5) Type of load Case no. 

 

Unsafe 

 

Unsafe 

 

Fx=3000 t 

 

 

5 

 

Unsafe 

 

Unsafe 

Fx=3000 t 

Fy=3000 t 

 

6 

 

Unsafe 

 

Unsafe 

 

Fy=3000 t 

 

 

7 
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Table1, Continued 

Proposed technique Building code Eq. (5) Type of load Case no. 

 

Unsafe 

 

Unsafe 

Fx=1000 t 

Fy= 3000 t 

 

8 

 

Unsafe 

 

Unsafe 

Fx=2000 t 

Fy=2000 t 

 

9 

 

Safe 

 

Safe 

Fx=700 t 

Fy= 700 t 

 

10 
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5. PUNCHING CALCULATION FOR COLUMN WITH IRREGULAR 

CROSS SEC. 
 

The main advantage of the developed software is its versatility in dealing with 

columns with arbitrary/irregular cross sections and its capability to accurately and 

efficiently draw any shape of the critical section for punching; a task that Eq. (5) 

cannot straightforwardly address except with some assumptions and/or 

approximations. In order to illustrate the software competence let us consider the 

problem shown in Fig. 5. The slab thickness (t) is 0.22m with an effective depth (d) 

assumed as 0.20m. Young’s modulus for concrete (E) is 2.1×10
6
 t/m

2
. The column 

under study is as shown in Fig. 5. The slab is subjected to 2 t/m
2
 distributed load, 

and the primary critical section for punching is assumed at a distance d/2 from the face 

of the column while the secondary critical section is assumed at a distance 2d from the 

face of the column. Fig.6. demonstrates the BEM mesh of the problem. It can be seen 

from Fig.7, that punching is unsafe around the irregular column under 

consideration; a conclusion that is accurately achieved through applying the 

proposed technique and the developed software. 

 

Fig. 5. Flat slab scheme supported on columns. 
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Fig. 6. BEM mesh of the flat slab scheme supported on columns. 

 

 

Fig. 7. The check of punching around an irregular  

    column using the proposed technique. 
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6. CONCLUSIONS 
 

The paper illustrates the link between the shear stresses retrieved per the theory 

of elasticity principles and the single-valued shear stress referred to in the semi-

empirical punching shear formula adopted in ACI 318 as an example. It further 

proposes a computational/numerical robust technique based on the BEM formulation 

to check punching stresses of RC columns with arbitrary cross section (regular or 

irregular). The proposed method is implemented into a versatile BEM-based software 

with a smart graphical interface. The software has been tested for rectangular as well 

as real-world irregular shape columns that building code formula cannot 

straightforwardly address. Satisfactory results have been obtained as illustrated in the 

present manuscript when applying the proposed technique proving the reliability, 

efficiency, robustness and practicality of the software that shall be hence promoted for 

the research and design community. 
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 معادلة القصل ى الاساس النظر 

 
لعدة اعمدة وتحديد ىل العمهد  نظرية المرونة ىالقص ف ىين اجيادالبحث تهقيع العلاقة ب تم فى

بين  أخرى  تم ايجاد علاقة ىذه العلاقةومن ، الاكهاد ىامن ام لا بهاسطة معادلة القص المقترحة ف
وتم تطهير ، معادلة القص ىالمعتمد عم ىنظرية المرونة والاساس المعمم ىالمعتمد عم ى الاساس النظر 
ان ىذه  حيثعمهد غير منتظم القطاع  ىامج حاسب لفحص القص الثاقب لابرن بهاسطة ى الاساس النظر 

الاعمدة ذات المقطع المنتظم  ىوتم تطبيق البرنامج اولا عم، الاكهاد العالمية ىالجزئية غير مغطاة ف
 الاعمدة ذات المقطع غير المنتظم. ىومقارنة النتائج ثم تطبيقو عم
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