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ABSTRACT

The shoreline changes in the vicinity of offshore breakwaters are significantly
influenced by the geometric parameters of offshore breakwaters. The complexity of
the behaviour of shoreline changes behind offshore breakwaters makes it difficult to
predict analytically these changes. As a result, numerical models are frequently used.
In this paper, Artificial Neural Networks (ANNs) are developed to predict the
shoreline changes behind offshore breakwaters. The developed ANN models can
accurately predict the salient size, X5 , the sand deposited volume behind offshore
breakwaters, ¥s , for a known set of geometric parameters of offshore breakwaters.
Four geometric parameters are found to be important, they are: the breakwater length,
Lg, the offshore distance of the breakwater from the original shoreline, Xg, the surf
zone width, X, and the gape spacing between adjacent breakwaters, Gg, respectively.
A comparison between ANNs and regression models for predicting the salient size and
sand deposited volume is presented and the advantages of utilizing ANN methodology
over regression techniques in model development are highlighted.

KEYWORDS: Neural networks, offshore breakwaters, beach protection, salient size,
sand deposited volume.

1. INTRODUCTION

The use of offshore breakwaters for beach protection has increased substantially
in the last two decades. They are generally constructed away from and parallel to the
shoreline to dissipate wave energy and cause sand deposition in the sheltered area

behind the breakwater. Although numerous field observations and physical models
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have been conducted to study the phenomenon, the complicated hydrodynamics and
sediment transport mechanism around the breakwater have not been fully understood.
It is known that the currents engendered behind the breakwater by wave
dissipation in the sheltered area are building a new equilibrium shape of the shoreline.
This new shoreline is affected by many parameters, including sediment supply,
sediment properties, wave characteristics, coastal zone topography and breakwater
configuration, see Fig. 1. However, the most pronounced parameters appear to be: the
breakwater length, Lg , the offshore distance of the breakwater from the original
shoreline, Xz , the surf zone width, X, and the gap spacing between adjacent
breakwaters, Gg. The contributions of these parameters to salient size and sand
deposited volume is difficult to model physically since all of these parameters

mutually interact and the relationships between them are not well understood.
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Fig. . Schematic diagram of offshore breakwaters.

This paper describes an effort to predict the salient size and sand deposited
volume behind offshore breakwaters, using the technique of Artificial Neural
Networks (ANNs). Neural networks provide a non-parametric and model-free
mapping between a given set of input data and that of output data. Details of the
theoretical concepts involved in ANNs can be found in any of the standard textbooks
[1,2]. Applications of neural networks in civil engineering are relatively recent [3-6]

and include a variety of coastal problems such as: forecasting wave height
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interpolations for shorter duration, given their observations over longer periods [7],
tidal-level forecasting [8], stability analysis of rubble-mound breakwaters- [9], and

prediction model for occurrence of impact wave force [10].

2. ANALYZED DATA

Many coastal engineers have tried to find the proper design criteria for an
offshore breakwater system relating its geometric parameters to the corresponding
shoreline change by means of physical model test [11-15], numerical modeling
[16,17], or the investigation of the previously constructed offshore breakwater systems
[18-21].

For the purpose of developing an ANN model to predict accurately shoreline
changes behind offshore breakwaters, represented by salient size and sand deposited
volume, it is important to develop an understanding of the dimensional analysis of the
governmental parameters. The functional relationships of the governing parameters for

shoreline changes behind offshore breakwaters can be written in the dimensionless

from as:
Xs Vs i Lg Lg X £ Gpg Gp On VfT Dso) M)
s =, ==K = . g :
Xg Vg gTz Xg Xg Xg Lp +Gpg Hg/r Hp hg

where X is the distance to the end of the salient from original shoreline, hp is the
water depth at breakwater, H, is the breaking wave height, T is the wave period, g is
the acceleration of gravity, Vi is the deposited sand volume behind breakwater, ¥ is
the sheltered volume (Vg = LgXzhs/2), O, is the longshore transport rate, K, is the
dimensionless wave transmission coefficient, Dj, is the mean diameter of sediment
grain, and F/is the fall velocity of sediment.

It is obvious that the number of possible significant variables makes the design
and analysis of data very difficult, and that if limited data are to be arranged in some
meaningful way, certain assumptions must be made in order to reduce the number of
variables. Due to the limitation in collecting and measuring field and experimental

data. some variable will be eliminated and Eq. (1) will be reduced as:
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- For measuring physical data

Xs Vs e Ly X VT

. L, -8 b L, @)
Xg Vg gr- Xg Xg H,y
- For collecting field data
Xsg V Lg G G
S8 I8 f( =B 28 8 ) (3)

Xg ' Vg Xg Xp ' Lp+Gpg

The available data from physical model studies are summarized in Table 1. All
the data in the table are for single offshore breakwater subject to normal incident
waves. Additionally, the summary of the characteristics of the offshore breakwaters in
the field is presented in Table 2.

Table 1. Database of physical models.

Author LoeT | Lyxy | X% | vave, | xox, | vyv,
Shinoharaand | 0.180 | 2.000 | 2.133 | 0.500 | 0.360 | 0.630
Tsubaki (1966) | 0.180 | 1.000 | 1.067 | 0.500 | 0.207 | 0.151
0.180 | 0.566 | 0.604 | 0.500 | 0.132 | 0.051
0.180 | 0.400 | 0.427 | 0.500 | 0.088 | 0.022
0.180 | 2.000 | 2.133 | 0.500 | 0.667 | 1.000
0.180 | 1.000 | 1.067 | 0.500 | 0.387 | 0.400
0.180 | 0.566 | 0.604 | 0.500 | 0.155 |0.122
0.180 | 0.400 | 0.427 | 0.500 | 0.053 | 0.022
Rosen and 0.080 | 0.167 | 0.453 | 0.870 | 0.053 | 0.011
Vajda (1982) 0.160 | 0.333 | 0.453 | 0.870 | 0.087 | 0.030
0.320 | 0.667 | 0.453 | 0.870 | 0.127 | 0.065
0.080 | 0.250 | 0.680 | 0.870 | 0.105 | 0.044
0.080 | 0.500 | 1.360 | 0.870 | 0.240 | 0.230
0.160 | 1.000 | 1.360 | 0.870 | 0.560 | 1.000
0.320 | 2.000 | 1.360 | 0.870 | 0.820 | 1.000
0.100 | 0.400 | 0.680 | 0.665 | 0.140 | 0.078
0.050 | 0.250 | 0.850 | 0.665 | 0.115 | 0.053
0.100 | 0.500 | 0.850 | 0.665 | 0.210 | 0.176
0.200 | 1.000 | 0.850 | 0.665 | 0.330 | 0.436
0.050 | 0.500 | 1.700 | 0.665 | 0.260 | 0.270
0.100 | 1.000 | 1.700 | 0.665 | 0.550 | 1.000
| 0200 | 2.000 | 1.700 | 0.665 | 1.000 | 1.000
| 0.050 | 0.500 | 1.700 | 0.665 | 0.250 | 0.250
0.039 | 0.250 | 0.500 | 1.068 | 0.025 | 0.003
0.077 | 0.500 | 0.500 | 1.068 | 0.120 | 0.058
0.154 | 1.000 | 0.500 | 1.068 | 0.115 | 0.053
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uthor LyeT’ | Ly/Xs | Xy/Xy | Vi/H, | XgfXs | VoV
imura, et al 0.189 | 0.833 | 1.000 | 0.295 | 0.361 | 0.573
Harris and 0.069 | 1.429 | 1.072 | 1.014 | 0.197 | 0.619

Herbich (1986) | 0.069 | 1.429 | 1.072 | 1.014 | 0.204 0.667
0.069 | 1.429 | 1.072 | 1.014 | 0.208 | 0.692
0.069 | 1.000 | 0.596 | 1.014 | 0.166 | 0.439
0.069 | 1.000 | 0.596 | 1.014 | 0.164 | 0.432
0.069 | 0.800 | 0.680 | 1.014 | 0.109 | 0.190
0.069 | 0.800 | 0.801 | 1.014 | 0.116 | 0.217
0.069 | 0.800 | 0.425 | 1.014 | 0.127 | 0.257

Suh and 0011 | 0.500 | 0.667 | 2.062 | 0.100 | 0.098
Dalrymple 0.032 | 1.500 | 0.667 | 2.062 | 0.867 | 0.759
(1987) 0.043 | 2.000 | 0.667 | 2.062 | 0.867 | 0.801

0.053 | 2.500 | 0.667 | 2.062 | 0.767 | 0.640
0.064 | 3.000 | 0.667 | 2.062 | 1.000 | 0.900
0.043 | 1.500 | 0.500 | 2.062 | 0.225 | 0.280
0.057 | 2.000 | 0.500 | 2.062 | 0.725 | 0.518
0.071 | 2.500 | 0.500 | 2.062 | 0.500 | 0.610
0.142 | 5.000 | 0.500 | 2.062 | 0.450 | 0.280
0.071 | 2.000 | 0.400 | 2.062 | 0.300 |0.260
0.089 | 2.500 | 0.400 | 2.062 | 0.440 |0.270
0.106 | 3.000 | 0.400 | 2.062 | 0.420 | 0.240
0.071 | 2.500 | 0.500 | 2.062 | 0.400 | 0.340
0.071 | 2.500 | 0.500 | 2.062 | 0.675 | 0.470
0.071 | 2.500 | 0.500 | 2.062 | 0.400 | 0.250
Ming and 0.127 | 1.500 | 0.833 | 0.676 | 1.000 | 0.667
Chiew (2000) 0.169 | 2.000 | 0.833 | 0.676 | 1.000 | 0.961
0.212 | 2.500 | 0.833 | 0.676 | 1.000 | 0.859
0.085 | 0.667 | 0.556 | 0.760 | 0.267 | 0.102
0.127 | 1.000 | 0.556 | 0.760 | 0.693 | 0.518
0.169 | 1.333 | 0.556 | 0.760 | 1.000 | 0.669
0.212 | 1.667 | 0.556 | 0.760 | 1.000 | 0.619
0.085 | 0.500 | 0.417 | 0.811 | 0.100 | 0.012
0.127 | 0.750 | 0.417 | 0.811 | 0.417 | 0.146
| 0.169 | 1.000 | 0.417 | 0.811 | 0.670 | 0.413
0212 | 1.250 | 0417 | 0.811 | 1.000 | 0.517
0.085 | 0.400 | 0.333 | 0.845 | 0.027 | 0.001
0.127 | 0.600 | 0.333 | 0.845 | 0.227 | 0.047
| 0.169 | 0.800 | 0.333 | 0.845 | 0.400 | 0.160
0212 | 1.000 | 0.333 | 0.845 | 0.627 | 0.404
| 0.077 | 2.000 | 1.000 | 0.914 | 1.000 | 0.693
0.077 | 0.714 | 0357 | 1.164 | 0.400 | 0.104
0.077 | 0.714 | 0.357 | 1.164 | 0.371 | 0.107
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Table 2. Database of field observations.

Author Lo/Xs | Go/Xp |Go/Ls*+Gol Xo/Xp | Vo/Va
Fried (1976) LIl | 0.519 | 0318 | 1.000 | 0.419
1.035 | 0.560 | 0.351 | 1.000 | 0.469
1.077 | 0.538 | 0.333 | 1.000 | 0.441
1.550 | 0.750 | 0.326 | 1.000 | 0.363
1.200 | 0.750 |.0.385 | 1.000 | 0.208
1.375 | 0.750 | 0.353 | 1.000 | 0.296
Toyoshima (1982)| 1.364 | 0455 | 0.250 | 1.000 | 0.868
1364 | 0455 | 0.250 | 1.000 | 1.183
1.035 |.0.345 | 0250 | 0.778 | 0.374
1.500 | 0.500 | 0.250 | 1.000 | 1.200
1.071 | 0357 | 0.250 | 1.000 | 0.600
1.500 | 0.500 | 0.250 | 1.000 | 0.771
0.968 | 0.323 | 0.250 | 0.768 | 0.711
1.304 | 0435 | 0.250 | 1.000 | 0.710
1.500 | 0.500 | 0.250 | 1.000 | 0.596
2.000 | 0.667 | 0.250 | 1.000 | 1.677
2.000 | 0.667 | 0.250 | 0.480 | 0.526
1.351 | 0451 | 0.250 | 0.919 | 0.819
Dally and 0.889 | 2.000 | 0.692 | 0.689 | 0.475
Pope (1986) 0.667 | 1.250 | 0.652 | 0.200 | 0.040
0.667 | 1.000 | 0.600 | 0.100 | 0.010
0.727 | 1.364 | 0.652 | 0.291 | 0.085
0.923 | 0.692 | 0.429 | 0939 | 0.881
0.923 | 0692 | 0.429 | 0.954 | 0.910
0.923 | 0692 | 0.429 | 0.908 | 0.824
0.923 | 0.692 | 0.429 | 0.939 | 0.881
0.923 | 0.692 | 0.429 | 0.939 | 0.881
3.750 | 1.667 | 0.308 | 1.000 | 1.000
2500 | 1.375 | 0355 | 0.583 | 0.340
2500 | 1.083 | 0302 | 0.333 | 0.111
2917 | 0320 | 1375 | 0.625 | 0.391

3. ARTIFICIAL NEURAL NETWORKS

[n recent years, there has been a growing interest in a class of computing
devices that operate in a manner analogous to that of biological nervous system. These
devices, known as Artificial Neural Networks (ANNs), are finding applications in

almost all branches of science and engineering.
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RE

Input Layer—s-Hidden Layer—Output Layer

Fig. 2. Three layered ANN.

The emergence of ANN scheme was driven by the present understanding of
how the neuronal architecture and operation of the human brain might function.
Because of the similarity of ANNs fundamental model to that of human brain, ANNs
have some unique human-like capabilities in information processing. ANNs do not
have to be programmed to solve a problem, they learn from examples, which is the
most important capability of ANNs. ANNs are capable of learning complex, highly
nonlinear relationships and association of limited data.

The Information and knowledge learned by the ANNs is encoded and stored in
the connection weights of the network. The retrieval of the stored information is done
routinely by providing the network with an input pattern, which acts as a key. Once
the learning is done, ANNs can give reasonable answers to the problem and use them
in recall as many times as desired. As shown in Fig. 2 the topology of ANN consists of
three layers; input layer, hidden layer and output layer. The three layers are connected
with connections represented by the weight matrices and its biases. An algorithm,
known as the error back-propagation algorithm [I, 2], was chosen to perform the
procedure as follows:

I- Initialize weights and biases: All input and output values were normalized, and
all weights ¥V and W, and their biases were initialized by a random number

within the interval (-1, 1); where ¥ is the weight matrix between the i* input
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neuron and the " hidden neuron; and Wy is the weight matrix between the &
hidden neuron and the ;* output neuron.

Propagate the simulation of inputs and outputs: The output H; of the " hidden
neuron, given by the log-sigmoid transfer function of the weighted sum of all
inputs it received, is calculated by

i ' for k=12 B “)

l+exp(- Z wXi)
i=l

where 4 and B are total number of input neurons and total number of hidden
neurons, respectively, and JX; is input value at the input neuron. The output Uj of
the jth output neuron is similarly calculated:

| :
Uy = = Sfor F=Ld i iC (5)
1+exp(- ZWUHic)
k=1
where C is total number of output neurons.

Back-propagate errors: Start at output neurons and work back to hidden
neurons. During this backward pass, compare the output U, with the target output

T to minimize the error function:

™o

E = (T;-U; ¥ (6)
Jj=1
by the gradient steepest descent method, resulting in the increment AW,; in the

| —

weight I, as follows:
Aij=q Uj(i"UJ )(TJ_D_;)HI( (7)
where 7 is the learning rate or the step size. This is used to minimize the error

h

function. For further learning, any »™ increment on the weight Wy, i.e. AW"; is

given as a function of (n-/)" increment AW™',; by
7 S . . r rn—|1

where a is the momentum factor. Similarly, the nth increment AV in the weight

" between the i input neuron and the £* hidden neuron is given as a function of
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its (n-1)" increment 4™, by
z -1
AV:’: =nX; Hk(l_Hk )chleJ~(l—Lt’j )(T}—LJ, )W)'g +a AVI; (9)

4- The weights of the connection are modified iteratively using the leafing

technique until the total mean square error becomes as low as 0.0001.

4. APPLICATION OF ANNs TO SHORELINE CHANGES

As a preliminary examination, the characteristics of the neural network are

checked. After several trails the number of hiddin neurons is taken equal to 10.

4.1. Application to Physical Models

For physical models, four input parameters corresponding to the dimensionless
variables representing geometry of breakwater placement, wave properties and
sediment characteristics, LB/gT?, Ly/X3, Xi/Xg and V,T/H,, are employed to predict the
dimensionless variables representing salient size and sand deposited volume behind
offshore breakwater, X¢/X;3 and V'V, respectively.

The effect of each input parameter on the prediction of salient size and sand
deposited volume are separately investigated in Figs. 3(a-d), where the comparisons
between actual and predicted values of salient size and sand deposited volume are
shown. From this figure it is obvious that a less agreement can be achieved between
actual and predicted values of Xs/Xj and ¥/V3 when each parameter Lg/gT’ and VI/H,
are separately investigated: whereas a good agreement between actual and predicted
values of XyX; and VyV; when each parameter Lp/Xp and X,/Xj are separately
investigated. Therefore, both parameters Lg/X; and .X,/X; are seen to be important in
the study of the shoreline changes behind offshore breakwaters.

Figure 4 shows the comparison between actual and predicted values of XyX;
and ¥V when all the input parameters are employed. [t can be seen from this figure
that the agreement between the actual and predicted values of XyXjzand Vy/Vjis
improved comparing to those in Fig. 3, in which the effect of each parameter is

investigated separately.
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Fig. 3. Comparison between actual values of X¢/X and VgV measured in physical
models and the predicted ones by ANNs when each parameters is investigated

separately.

4.2. Application to field data

From available field data, three input parameters corresponding to geometry of
breakwaters placement, in dimensionless form, Ly/Xy, G/Xp, Gy/'Ls+Gy are employed
to predict the dimensionless variable representing salient size and sand deposited
volume behind offshore breakwaters, Xy/Xz and VgV , respectively. The effect of

each input parameter on Xy¢X3 and Vy/Vj i1s separately investigated in Fig. 5(a-c);
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Fig. 4. Comparison between actual values of Xs/Xp and V/V measured in physical
models and the predicted ones by ANNs when all the input parameters
are employed.

where the actual and predicted values of Xg/Xp and Vg/Vy are shown. From this figure
it is obvious that; the agreement between actual and predicted values of X¢/X} and
Vs/V is good when each input parameter Ly/X; and Gp/Xj is separately investigated. A
less agreement between actual and predicted values of Xy/Xz and ¥Fy/V; when the
parameter Gp/Lg+Gy is separately investigated. This means that both parameters are
seen to be important in the study of the shoreline changes behind offshore
breakwaters.

Figure 6 shows the comparison between actual and predicted values of Xy/Xj
and V¢V when all the input parameters are used. [t can be seen from this figure that
the agreement between the actual and predicted values of Xs/Xp and V/Vy is improved

comparing to those in Fig 35, in which the effect of each parameter is investigated

separately.

5. ANNs VERSUS REGRESION MODELS

A comparison of ANNs with regression models is performed using two

regression equations given by Suh and Dalrymple [17]; and Ming and Chiew[13].
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Fig. 5. Comparison between actual values of X¢/X3 and ¥¢/¥; measured in the field and
the predicted ones by ANNs when each parameters is investigated separately.

The first equation was derived to estimate the salient size and the second one was

derived to estimate the sand deposited area behind offshore breakwaters. Suh and

Dalrymple [17] have derived their equation by using the approximately fitted curve for

the available field data and is given by
X

5 Gal X
Z2 =148 4y ewp( -2824)° ) | where A = —8 "8

—8 8 (10)
X (Lg/Xg)
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Fig. 6. Comparison between actual values of X. Xy and V¢V measured in the field and
the predicted ones by ANNs when all the input parameters are employed.

To perform a comparison between ANN model and Eq. (10), ANN was trained
on the 22 sets and tested by 9 sets, where the development of any regression equation
is usually based on utilizing all the data sets available, rather than leaving a subset for
testing as it is commonly practiced with developing ANN. The values of Xy/Xj so
predicted by ANN and regression equation are then compared with the actual values,
as shown in Fig. 7. The ANN model has predicted the salient size with correlation
coefficient = 0.9986 as compared to 0.7040 for the regreésion model.

Ming and Chiew [13] have derived their equation by using the approximately
fitting curve for the experimental data and is given by

44 s
S = ~0384 + 004328 0711 L8 (1)
‘YE LB :YB

where 5 is the deposited area. In order to perform a comparison between ANN model
and regression equation, the deposited volume V5 was estimated using the deposited
area As calculated from Eq. (11) as Vy = Ag hg, where kg is the beach height = X; tan S
and ran fis the beach slope. The ANN model was trained on the 53 sets and tested by

13 sets. The values of V¢V so predicted by ANN model and regression equation are

~
~
w
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compared with the actual values, as shown in Fig. 8. The ANN model has predicted
the sand deposited volume with correlation coefficient = 0.9903 as compared to
0.7918 for the regression equation. As shown in Figs. 7 and 8, a close agreement
between the actual values and the predicted values by ANNs may signify the

effectiveness of ANNs over conventional regression models.

b *
* *
08 F * * L]
- |
2 06}
<3
=
& °
@ L *
25}} 0.4 £
>
02
W ANN & Reg Eq.
Line of Equality
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

X_-;an (Actual)

Fig. 7. Comparison between actual values of Xy/X; and predicted ones by ANN and

regression models.

6. CONCLUSIONS

Artificial neural networks (ANNs) based on the back-propagation algorithm
were developed in this paper for predicting the shoreline changes behind offshore
breakwaters. The use of ANNs was examined in terms of various design parameters of
the breakwater configurations, sediment and wave characteristics. The developed
ANN models can accurately predict the salient size and the sand deposited volume

behind the breakwaters. The analysis of the ANN models show that the breakwater
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Fig. 8. Comparison between actual values of ¥/V; and predicted ones by ANN and
: regression models.

length, L, the offshore distance of the breakwater from the original shoreline, Xj, the

surf zone width, X, and the gape spacing between adjacent breakwaters, G, appear to

be important parameters that control the configuration of the shoreline shape and the

amount of sand trapping behind the breakwaters.

The values predicted by ANNs were found to be more close to the actual values
than those based on common regression models. This gives the advantage of using
ANNs over regression models. Another advantage of the ANNs over regression
models lies in their ability to model multi-output phenomena. F inally, ANNs do not
have to be programmed to solve a problem, they learn from examples; once the

learning is done, they can give reasonable answers to the problem and use them in

recall as many times.
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